Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

The Directional Structure Transition of MnO₂ during Drying Process

Kailun Wang, Qin Cheng, Jia-qi Bai, Fang Chen, Jingshuai Chen*, Mingyuan Wu,

Song Sun, and Chang-Jie Mao

[†]School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui University, Hefei, Anhui 230601, China

* Corresponding author

E-mail addresses: chen_jshuai@ahu.edu.cn

Number of Pages: 18 (S1 to S18)

Number of Figures: 11 (S1 to S14) Number of Tables: 1 (S1)

Preparation of Na⁺/δ-MnO₂

 $0.043 \text{ mol } MnSO_4$ was mixed in 100 mL of DI water via sonication for 15 min, after that, 100 mL of 0.05 mol NaMnO₄ was slowly added to the above solution within 5 min under vigorous magnetic stirring, followed by stirring at 80 °C for 100 minutes. After cooling down to room temperature, the precipitates were collected by centrifugation and washed several times with DI water.

After washing, equal amount of wet materials were put into three identical containers, each container was sealed with a cap with a small hole, and the drying rate of the materials in the container was adjusted by changing the size of the hole.

Fig. S1 The drying rate curves (a) in the case of Area = 0.13 cm^2 , (b) in the case of Area = 0.38 cm^2 , (c) in the case of Area = 0.25 cm^2 .

Fig. S2 EDS mapping of δ -MnO_{2.}

Fig. S3 EDS mapping of α -MnO_{2.}

Fig. S4 The drying curves (a) in the case of Area = 0.25 cm^2 , Area = 0.38 cm^2 and Area = 0.50 cm^2 . The drying rate curves (b) in the case of Area = 0.25 cm^2 , (c) in the case of Area = 0.38 cm^2 , (d) in the case of Area = 0.50 cm^2 .

Fig. S5 XRD patterns (a) and SEM images (b and c) of MnO_2 -80°C-1, MnO_2 -80°C-2.

Fig. S6 The drying rate curves (a) in the case of Area = 0.13 cm^2 , XRD patterns (b) and SEM images (c) of MnO₂-120°C.

Fig. S7 (a) XPS spectra of C 1s, K 2p and K 2s for MnO_2-1 (δ -MnO₂) and MnO_2-4 (α -MnO₂). XPS survey spectra of MnO_2-1 (δ -MnO₂) and MnO_2-4 (α -MnO₂) (b). Mn 2p XPS spectra of the MnO₂-1 (c) and MnO₂-4 (d). Mn 3s XPS spectra of the MnO₂-1 (e) and MnO₂-4 (f).

δ -MnO₂ α -MnO₂

Fig. S8 Picture of synthesized MnO_2-1 (δ -MnO₂) (left) and MnO_2-4 (α -MnO₂) (right).

Fig. S9 Brunauer-Emmett-Teller (BET) analysis of MnO_2 -1, MnO_2 -2, MnO_2 -3, and MnO_2 -4.

After 100 minutes of reaction

Fig. S10 Photo of solution after 100 minutes of thermal reaction.

Electrode	Current density	Specific capacitance	Electrolyte	Ref.
	(A g ⁻¹)	(F g ⁻¹)		
δ -MnO ₂ + α -MnO ₂	1.8	178	LiCl	1
Co ₉ S ₈ @ MnO ₂	1	711.5	NaSO4	2
δ -MnO ₂ @ α -MnO ₂	0.25	206	Na_2SO_4	3
MnO _x @rGO	1	405	КОН	4
Fe: MnO ₂	2	173	Na_2SO_4	5
K _{0.17} MnO ₂	1	206	K_2SO_4	6
α-MnO ₂	0.5	535	КОН	7
MnO ₂	3	304	Na_2SO_4	8
MnO ₂ -TEA	1	417.5	Na_2SO_4	9
δ-MnO ₂	1	565	КОН	This work

Table S1 Comparison of specific capacitance between MnO_2 based materials

Fig. S11 The cycling tests of K^+/δ -MnO₂ electrode at the 10 A g⁻¹.

Fig. S12 The cycling tests of α -MnO₂ electrode at the 10 A g⁻¹.

Fig. S13 SEM images of the (a, b) K⁺/ δ -MnO₂ electrode and (c, d) α -MnO₂ electrode after 5000 cycles at 10 A g⁻¹.

Fig. S14 (a) specific capacitance of K^+/δ -MnO₂ and α -MnO₂ at a series of current densities; (b) EIS curves of K^+/δ -MnO₂ and α -MnO₂.

References

- C. R. Zhu, L. Yang, J. K. Seo, X. Zhang, S. Wang, J. Shin, D. L. Chao, H. Zhang,
 Y. S. Meng and H. J. Fan, *Materials Horizons*, 2017, 4, 415-422.
- 2 Q. Li, M. Liu, F. Huang, X. Zuo, X. Wei, S. Li and H. Zhang, *Chemical Engineering Journal*, 2022, **437**, 135494.
- 3 T. Hatakeyama, N. L. Okamoto and T. Ichitsubo, *Journal of Solid State Chemistry*, 2022, **305**, 122683.
- 4 F. Jing, Z. Ma, J. Wang, Y. Fan, X. *Qin* and G. Shao, *Chemical Engineering Journal*, 2022, **435**, 135103.
- 5 D. P. Dubal, W. B. Kim and C. D. Lokhande, *Journal of Physics and Chemistry of Solids*, 2012, **73**, 18-24.
- 6 J. B. Zhu, Q. Y. Li, W. T. Bi, L. F. Bai, X. D. Zhang, J. F. Zhou and Y. Xie, *Journal of Materials Chemistry A*, 2013, 1, 8154-8159.
- 7 B. S. Yin, S. W. Zhang, H. Jiang, F. Y. Qu and X. Wu, *Journal of Materials Chemistry A*, 2015, **3**, 5722-5729.
- 8 Z.-H. Huang, Y. Song, D.-Y. Feng, Z. Sun, X. Sun and X.-X. Liu, ACS Nano, 2018, 12, 3557-3567.
- A. Q. Zhang, R. Zhao, L. Y. Hu, R. Yang, S. Y. Yao, S. Y. Wang, Z. Y. Yang and
 Y. M. Yan, *Advanced Energy Materials*, 2021, 11.