Selecting Dual Atomic Clusters Supported on Two-dimensional Biphenylene Significant Optimization of Capability to Reduce

Carbon Monoxide

Zhongwei Wang,^{ab} Zhili Yin,^a Yan Gao,^{*a} Haifeng Wang,^{*a} Junfeng Gao^{*ab} and Jijun Zhao^b

^aCollege of Sciences/Xinjiang Production & Construction Corps Key Laboratory of Advanced

Energy Storage Materials and Technologies, Shihezi University, Shihezi 832000, China

^bKey Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China

Fig. S1. Phonon dispersion spectrum of the BPN.

Fig. S2. Isosurfaces of electron localization function of the BPN.

Fig. S3. The electrostatic potential along the z-axis direction.

Fig. S4. Five different types of diatomic configurations in BPN.

Fig. S5. Optimal adsorption conformations of 3d, 4d, and 5d transition metal diatoms.

Fig. S6. The calculated migration barrier for Cu.

Fig. S7. AIMD simulations of Cu_2BPN were carried out at 500 K over a total time step of 10 ps, using both vacuum conditions and an explicit solvent model to simulate aqueous solution conditions. The green and yellow parts in the figure represent temperature and energy, respectively.

Rh₂@BPN

Pd₂@BPN

Fig. S8. CDD distributions for 22 TM₂@BPN, where the isosurface value is 0.0015 $e^{A^{-3}}$ and cyan and yellow represent the accumulation and depletion of charge, respectively.

Fig. S9. Calculated the TDOS and *d*-orbital PDOS for 22 TM₂@BPN, displayed in gray and blue, respectively.

CO-Rh₂@BPN

CO-Pd₂@BPN

(

Fig. S10. CDD distributions for 22 CO-TM₂@BPN catalysts, with an isosurface value set at 0.0015 $e^{A^{-3}}$. In these distributions, cyan and yellow indicate the accumulation and depletion of charge, respectively

Fig. S11. PDOS calculations for CO molecules on 22 $TM_2@BPN$ surfaces. The *d*-orbitals of TM and the *p*-orbitals of CO are depicted in blue and pink, respectively.

Fig. S12. Free energy diagram of CO reduction to various C_1 on $Sc_2@BPN$. The black line represents the common path, the red line represents the CH₃OH path, and the blue line represents the CH₄ path.

Fig. S13. Free energy diagram of CO reduction to various C_1 on $Ti_2@BPN$. The black line represents the common path, the red line represents the CH₃OH path, and the blue line represents the CH₄ path.

Fig. S14. Free energy diagram of CO reduction to various C_1 on $V_2@BPN$. The black line represents the common path, the red line represents the CH₃OH path, and the blue line represents the CH₄ path.

Fig. S15. Free energy diagram of CO reduction to various C_1 on $Mn_2@BPN$. The black line represents the common path, the red line represents the CH₃OH path, and the blue line represents the CH₄ path.

Fig. S16. Free energy diagram of CO reduction to various C_1 on $Y_2@BPN$. The black line represents the common path, the red line represents the CH₃OH path, and the blue line represents the CH₄ path.

Fig. S17. Free energy diagram of CO reduction to various C_1 on Nb₂@BPN. The black line represents the common path, the red line represents the CH₃OH path, and the blue line represents the CH₄ path.

Fig. S18. Free energy diagram of CO reduction to various C_1 on $Ta_2@BPN$. The black line represents the common path, the red line represents the CH₃OH path, and the blue line represents the CH₄ path.

Fig. S19. Free energy diagram of CO reduction to various C_1 on $W_2@BPN$. The black line represents the common path, the red line represents the CH₃OH path, and the blue line represents the CH₄ path.

Fig. S20. IS, TS, and FS energy changes involved in the reaction $*CO.CO \rightarrow *COCO$ and $*CHO.CO \rightarrow *CHOCO$ for the Sc₂@BPN.

Fig. S21. IS, TS, and FS energy changes involved in the reaction $*CO.CO \rightarrow *COCO$ and $*CHO.CO \rightarrow *CHOCO$ for the V₂@BPN.

Fig. S22. IS, TS, and FS energy changes involved in the reaction $*CH_2.CO \rightarrow *CH_2CO$ for the Ni₂@BPN.

Fig. S23. IS, TS, and FS energy changes involved in the reaction $*CO.CO \rightarrow *COCO$ and $*CHO.CO \rightarrow *CHOCO$ for the Y₂@BPN.

Fig. S24. IS, TS, and FS energy changes involved in the reaction $*CO.CO \rightarrow *COCO$ for the $Zr_2@BPN$.

Fig. S25. IS, TS, and FS energy changes involved in the reaction $*CO.CO \rightarrow *COCO$ for the Hf₂@BPN.

Fig. S26. IS, TS, and FS energy changes involved in the reaction $*CH_2.CO \rightarrow *CH_2CO$ for the Ir₂@BPN.

Fig. S27. Free energy diagram of CO reduction to various C₂ on Sc₂@BPN.

Fig. S28. Free energy diagram of CO reduction to various C_2 on $V_2@BPN$.

Fig. S29. Free energy diagram of CO reduction to various C_2 on $Y_2@BPN$.

Fig. S30. Free energy diagram of CO reduction to various C₂ on Zr₂@BPN.

Fig. S31. Free energy diagram of CO reduction to various C₂ on Hf₂@BPN.

Fig. S32. IS, TS, and FS energy changes involved in the reaction $*CH_2.H \rightarrow *CH_3$ for the Ni₂@BPN.

Fig. S33. IS, TS, and FS energy changes involved in the reaction $*CH_2.H \rightarrow *CH_3$ for the Ir₂@BPN.

Reaction Pathway

Fig. S34. Free energy diagrams of CORR on $Fe_2@BPN$ without/with solvent effect along the energetically favorable pathway.

Fig. S35. Free energy diagrams of CORR on $Ni_2@BPN$ without/with solvent effect along the energetically favorable pathway.

Fig. S36. Free energy diagrams of CORR on $Cu_2@BPN$ without/with solvent effect along the energetically favorable pathway.

Fig. S37. Free energy diagrams of CORR on $Ir_2@BPN$ without/with solvent effect along the energetically favorable pathway.

Metal	Conf-I (eV)	Conf-II (eV)	Conf-III(eV)	Conf-IV (eV)	Conf-V (eV)
Sc	Relax to Conf-III	0.66	0	1.18	0.36
Ti	Relax to Conf-III	0	0.03	0.63	1.10
V	0.69	0	/	1.37	/
Cr	0.01	0	Relax to Conf-I	0.95	0.80
Mn	1.39	0	/	0.84	0.78
Fe	0	0.54	Relax to Conf-I	0.69	0.51
Со	0	0.14	/	0.74	0.54
Ni	0	0.38	/	0.83	0.78
Cu	0	0.37	Relax to Conf-I	/	0.03
Zn	0	/	0.01	0.02	0.01
Y	Relax to Conf-III	/	0	1.53	0.40
Zr	Relax to Conf-III	0.82	0	1.31	0.77
Nb	Relax to Conf-III	0.09	0	0.85	Relax to Conf-III
Mo	0	0.20	Relax to Conf-I	0.50	Relax to Conf-I
Ru	0	0.28	/	0.72	0.97
Rh	0.01	0	/	0.76	0.88
Pd	0	0.67	Relax to Conf-I	/	0.56
Ag	0	0.03	0.01	0	0
Cd	0	/	0	0	0
Hf	Relax to Conf-V	0.9	0	1.65	0.66
Та	0.60	0.28	0	/	/
W	0	0.92	/	Relax to Conf-I	Relax to Conf-I
Re	0	0.50	0.85	1.18	1.11
Os	0	0.66	/	1.18	1.27
Ir	0	0.70	/	1.30	1.04
Pt	0	0.83	Relax to Conf-I	0.74	0.74
Au	0	0.02	/	0	0
Hg	0	/	0	0.01	0.01

Table S1. The most favorable configuration (conf) and relative energy in $TM_2@BPN$. "/" indicates that this conformation does not exist.

Table S2. Binding energy (E_b) of the DACs in the most stable configuration and the cohesion energy (E_{coh}) of the metal atoms in TM₂@BPN.

Metal	E _b (eV)	$E_{coh} (eV)$
Sc	-7.94	-4.21
Ti	-7.77	-5.40
V	-5.87	-5.35
Cr	-3.06	-4.02
Mn	-3.73	-3.54
Fe	-4.72	-4.84
Со	-5.08	-5.13
Ni	-6.09	-5.01
Cu	-3.19	-3.48
Zn	-0.49	-1.46
Y	-8.20	-4.51
Zr	-10.15	-6.36
Nb	-8.24	-7.48
Мо	-11.54	-9.01
Ru	-9.59	-8.49
Rh	-7.20	-6.53
Pd	-4.43	-4.30
Ag	-2.09	-2.97
Cd	-0.48	-1.07
Hf	-9.39	-6.88
Та	-9.62	-8.78
W	-9.63	-9.53
Re	-10.08	-9.62
Os	-8.58	-8.91
Ir	-8.22	-8.03
Pt	-7.12	-6.24
Au	-2.70	-3.63
Hg	-0.51	-0.59

Matal	$d_{\rm rest}({\rm \AA})$	$c_{\star}(\mathbf{eV})$	Mag (uB)	CT(a)
Ivicial	$u_{\mathrm{M-M}}(\mathrm{A})$		Mag (µB)	
Sc	4.01	1.47	1.24	2.25
Ti	2.48	1.05	1.34	1.68
V	2.43	0.40	3.33	1.49
Mn	2.57	-0.48	7.33	1.09
Fe	2.17	-0.95	5.32	0.77
Со	2.17	-1.19	2.68	0.58
Ni	2.36	-1.11	0.62	0.46
Cu	2.35	-2.10	0.00	0.42
Y	4.03	2.06	-1.06	2.55
Zr	3.53	0.85	1.21	2.17
Nb	2.61	0.54	0.93	1.65
Мо	1.73	-0.76	0.75	0.80
Ru	2.28	-1.13	2.99	0.48
Rh	2.65	-1.00	0.30	0.35
Pd	2.67	-1.81	0.00	0.21
Hf	3.30	1.30	0.59	2.15
Та	2.49	0.86	0.00	1.56
W	2.10	0.12	0.00	0.92
Re	2.14	-0.84	1.39	0.69
Os	2.27	-1.26	3.23	0.46
Ir	2.41	-1.46	1.09	0.19
Pt	2.55	-2.16	0.65	0.05

Table S3. Structural and electronic properties of $TM_2@BPN$, including M–M bonds (d_{M-M}), *d* band center (ϵ_d), magnetic moment (Mag), and charge transfer (CT) from metal dimer to C atoms.

(A) of M–C and C-O (d_{M-C} and d_{C-O}), and charge transfer (C1) from metal dimer to CO.					
Metal	$\Delta E_{*CO}(eV)$	$\Delta G_{*CO}(eV)$	$d_{\mathrm{M-C}}(\mathrm{\AA})$	$d_{\mathrm{C-O}}(\mathrm{\AA})$	CT (<i>e</i>)
Sc	-2.31	-1.69	2.23	1.25	-0.95
Ti	-2.68	-2.05	2.03	1.26	-1.07
V	-2.92	-2.32	1.97	1.26	-0.95
Mn	-2.34	-1.69	1.95	1.24	-0.82
Fe	-2.22	-1.63	1.88	1.23	-0.69
Со	-2.65	-2.00	1.91	1.19	-0.42
Ni	-2.34	-1.76	1.88	1.22	-0.52
Cu	-1.14	-0.57	1.93	1.19	-0.36
Y	-2.09	-1.47	2.40	1.24	-1.08
Zr	-2.96	-2.33	2.25	1.27	-1.12
Nb	-3.12	-2.48	2.08	1.28	-1.12
Мо	-1.13	-0.96	2.25	1.18	-0.44
Ru	-2.43	-1.80	2.01	1.21	-0.50
Rh	-2.58	-2.05	2.04	1.19	-0.35
Pd	-1.88	-1.27	2.00	1.18	-0.21
Hf	-3.03	-2.43	2.20	1.30	-1.21
Та	-3.51	-2.85	2.05	1.31	-1.16
W	-2.24	-1.61	2.05	1.28	-0.85
Re	-2.25	-1.59	1.94	1.18	-0.38
Os	-2.50	-1.83	1.87	1.18	-0.28
Ir	-2.42	-1.79	1.98	1.21	-0.41
Pt	-2.29	-1.64	1.86	1.17	-0.12

Table S4. The adsorption energy ΔE (eV) of CO, the Gibbs free energy ΔG (eV) of CO, the bond lengths (Å) of M–C and C-O (d_{M-C} and d_{C-O}), and charge transfer (CT) from metal dimer to CO.

Reaction process	ΔG
$*CO + H^+ + e^- \rightarrow *CHO$	-0.03
$*CO + H^+ + e^- \rightarrow *COH$	1.55
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{O}$	-0.92
$*CHO + H^+ + e^- \rightarrow *CHOH$	0.61
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{O}$	-0.54
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	1.11
$^{*}\mathrm{CH}_{3}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{O} + \mathrm{CH}_{4}(\mathrm{g})$	-1.76
$^{*}\mathrm{CH}_{3}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	2.34
$*O + H^+ + e^- \rightarrow *OH$	0.57
*OH + H ⁺ + $e^- \rightarrow$ *H ₂ O (l)	2.39

Table S5. The values of the free energy change ($\Delta G/eV$) at each step involved in Sc₂@BPN.

$*CO + H^+ + e^- \rightarrow *CHO$ 0.03
$*CO + H^+ + e^- \rightarrow *COH $ 1.52
$*CHO + H^+ + e^- \rightarrow *CH_2O \qquad -0.41$
$*CHO + H^+ + e^- \rightarrow *CHOH$ 0.87
$*CH_2O + H^+ + e^- \rightarrow *CH_3O \qquad -0.60$
$^{*}CH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OH \qquad 0.62$
$*CH_{3}O + H^{+} + e^{-} \rightarrow *O + CH_{4}(g) \qquad -1.43$
$*CH_{3}O + H^{+} + e^{-} \rightarrow *CH_{3}OH \qquad 2.17$
$*O + H^+ + e^- \rightarrow *OH$ 0.32
*OH+H ⁺ +e ⁻ \rightarrow *H ₂ O (l) 2.17

Table S6. The values of the free energy change ($\Delta G/eV$) at each step involved in Ti₂@BPN.

Reaction process	ΔG
$*CO + H^+ + e^- \rightarrow *CHO$	0.02
$*CO + H^+ + e^- \rightarrow *COH$	1.48
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{O}$	-1.00
$*CHO + H^+ + e^- \rightarrow *CHOH$	0.62
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{O}$	-0.03
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	1.32
$^{*}\mathrm{CH}_{3}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{O} + \mathrm{CH}_{4}(\mathrm{g})$	-1.35
$^{*}\mathrm{CH}_{3}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	2.47
$O^{+}H^{+}+e^{-} \rightarrow OH$	0.50
$*OH + H^+ + e^- \rightarrow *H_2O(l)$	2.27

Table S7. The values of the free energy change ($\Delta G/eV$) at each step involved in V₂@BPN.

Reaction process	ΔG
$*CO + H^+ + e^- \rightarrow *CHO$	0.13
$*CO + H^+ + e^- \rightarrow *COH$	1.08
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{O}$	-0.14
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CHOH}$	0.77
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{O}$	0.05
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	0.33
$^{*}\mathrm{CH}_{3}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	1.52
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\text{-}\mathrm{OH}$	-1.27
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2} + \mathrm{H}_{2}\mathrm{O}(\mathrm{I})$	-0.19
$^{*}\mathrm{CH}_{3}\text{-}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{OH} + \mathrm{CH}_{4}\left(\mathrm{g}\right)$	-0.73
*CH ₃ -OH +H ⁺ +e ⁻ \rightarrow *CH ₃ + H ₂ O(1)	0.27
$*OH + H^+ + e^- \rightarrow *H_2O$	2.13

Table S8. The values of the free energy change ($\Delta G/eV$) at each step involved in Mn₂@BPN.

Reaction process	ΔG
$*CO + H^+ + e^- \rightarrow *CHO$	0.38
$*CO + H^+ + e^- \rightarrow *COH$	1.37
$*CHO + H^+ + e^- \rightarrow *CH_2O$	-0.19
$*CHO + H^+ + e^- \rightarrow *CHOH$	0.63
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{O}$	0.21
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	0.31
$^{*}\mathrm{CH}_{3}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	1.13
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	1.02
$*CH_2OH + H^+ + e^- \rightarrow *CH_2 + H_2O (l)$	-0.28
$^{*}\mathrm{CH}_{2} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}$	-0.61
$^{*}\mathrm{CH}_{3} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{4}(\mathrm{g})$	0.62

Table S9. The values of the free energy change ($\Delta G/eV$) at each step involved in Fe₂@BPN.

Reaction process	ΔG
$*CO + H^+ + e^- \rightarrow *CHO$	0.59
$*CO + H^+ + e^- \rightarrow *COH$	1.95
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{O}$	-0.28
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CHOH}$	0.50
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{O}$	-0.23
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	0.25
$^{*}\mathrm{CH}_{3}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	1.00
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	0.51
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2} + \mathrm{H}_{2}\mathrm{O} (\mathrm{l})$	-0.20
$^{*}\mathrm{CH}_{2} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}$	-0.74
$*CH_3 + H^+ + e^- \rightarrow * CH_4(g)$	0.67

Table S10. The values of the free energy change ($\Delta G/eV$) at each step involved in Ni₂@BPN.

Reaction process	ΔG
$*CO + H^+ + e^- \rightarrow *CHO$	0.46
$*CO + H^+ + e^- \rightarrow *COH$	1.14
$*\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow *\mathrm{CH}_{2}\mathrm{O}$	-0.45
$*CHO + H^+ + e^- \rightarrow *CHOH$	0.03
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{O}$	-0.30
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	-0.34
$^{*}\mathrm{CH}_{3}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	0.33
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	0.29
$*CH_2OH + H^+ + e^- \rightarrow *CH_2 + H_2O(1)$	-0.10
$^{*}\mathrm{CH}_{2} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}$	-0.90
$^{*}\mathrm{CH}_{3} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{4}$	0.61

Table S11. The values of the free energy change ($\Delta G/eV$) at each step involved in Cu₂@BPN.

Reaction process	ΔG
$*CO + H^+ + e^- \rightarrow *CHO$	-0.19
$*CO + H^+ + e^- \rightarrow *COH$	1.63
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{O}$	-0.72
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CHOH}$	0.78
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{O}$	-0.48
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	0.98
$^{*}\mathrm{CH}_{3}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	1.90

Table S12. The values of the free energy change ($\Delta G/eV$) at each step involved in Y₂@BPN.

Reaction process	ΔG
$*CO + H^+ + e^- \rightarrow *CHO$	-0.12
$*CO + H^+ + e^- \rightarrow *COH$	0.97
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{O}$	0.10
$*CHO + H^+ + e^- \rightarrow *CHOH$	1.11
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{O}$	0.44
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	1.29
$^{*}\mathrm{CH}_{3}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	1.37

Table S13. The values of the free energy change ($\Delta G/eV$) at each step involved in Nb₂@BPN.

Reaction process	ΔG
$*CO + H^+ + e^- \rightarrow *CHO$	-0.14
$*CO + H^+ + e^- \rightarrow *COH$	1.04
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{O}$	0.03
$*CHO + H^+ + e^- \rightarrow *CHOH$	1.26
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3} \text{-}\mathrm{O}$	-1.22
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\text{-}\mathrm{OH}$	-1.53
$^{*}\mathrm{CH}_{2}\text{-}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\text{-}\mathrm{OH}$	0.40
$^{*}\mathrm{CH}_{2}\text{-}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\text{-}\mathrm{H}_{2}\mathrm{O} (\mathrm{l})$	1.92
$^{*}\mathrm{CH}_{3}\text{-}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{OH} + \mathrm{CH}_{4}(\mathrm{g})$	0.50
$*CH_3-OH + H^+ + e^- \rightarrow *CH_3 + H_2O (1)$	2.09
*OH +H ⁺ + $e^- \rightarrow *H_2O(l)$	1.35

Table S14. The values of the free energy change ($\Delta G/eV$) at each step involved in Ta₂@BPN.

Reaction process	ΔG
$*CO + H^+ + e^- \rightarrow *CHO$	0.10
$*CO + H^+ + e^- \rightarrow *COH$	1.13
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{O}$	-0.70
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CHOH}$	0.96
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{O}$	0.47
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2} \text{-}\mathrm{OH}$	-1.19
$^{*}\mathrm{CH}_{3}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	0.89
$^{*}\mathrm{CH}_{2}\text{-}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\text{-}\mathrm{H}_{2}\mathrm{O} (1)$	1.65
$^{*}\mathrm{CH}_{2} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}$	-0.01
$^{*}\mathrm{CH}_{3} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{4}$	0.45

Table S15. The values of the free energy change ($\Delta G/eV$) at each step involved in W₂@BPN.

Reaction process	ΔG	
$*CO + H^+ + e^- \rightarrow *CHO$	0.53	
$*CO + H^+ + e^- \rightarrow *COH$	0.67	
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{O}$	0.04	
$*CHO + H^+ + e^- \rightarrow *CHOH$	0.17	
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{O}$	-0.11	
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	0.25	
$^{*}\mathrm{CH}_{3}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	0.70	
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2} - \mathrm{H}_{2}\mathrm{O} (\mathrm{l})$	-0.12	
$^{*}\mathrm{CH}_{2} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}$	0.28	
$^{*}\mathrm{CH}_{3} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{4}$	0.28	

Table S16. The values of the free energy change ($\Delta G/eV$) at each step involved in Ir₂@BPN.

	*CO.CO \rightarrow	*CHO.CO \rightarrow	$^{*}\mathrm{CH}_{2}\mathrm{.CO}\rightarrow$
system	*СО-СО	*СНО-СО	*CH ₂ CO
Sc	-0.69	-1.41	_
V	0.28	0.76	_
Ni	1.65	0.81	-0.76
Cu	1.31	_	-0.34
Y	-0.69	-0.06	_
Zr	-0.30	_	_
Hf	-0.37	_	_
W	1.38	_	_
Ir		_	-1.33

Table S17. Gibbs free energy change ($\Delta G/eV$) of formation for C–C coupling via *CO.CO, *CHO.CO, and *CH₂.CO intermediates on TM₂@BPN.

Reaction process	ΔG
$*CO + H^+ + e^- \rightarrow *CHO$	-0.03
$*CHO + CO \rightarrow *CHO.CO$	-0.45
*CHO.CO \rightarrow *CHOCO	-1.86
$*CHOCO + H^+ + e^- \rightarrow *CH_2OCO$	0.09
$*CHOCO + H^+ + e^- \rightarrow *CHOHCO$	0.46
$*CHOCO + H^+ + e^- \rightarrow *CHOCHO$	-0.78
*CHOCO + H^+ + e^- → *CHOCOH	0.58
$*CHOCHO + H^+ + e^- \rightarrow *CH_2OCHO$	0.6
*CHOCHO +H ⁺ + $e^- \rightarrow$ *CHOHCHO	1.06
$*CHOCHO + H^+ + e^- \rightarrow *CHOCH_2O$	0.79
*CHOCHO + H^+ + $e^ \rightarrow$ *CHOCHOH	1.03
$^{*}CH_{2}OCHO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OHCHO$	0.48
$^{*}CH_{2}OCHO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OCH_{2}O$	-1.00
$^{*}CH_{2}OCHO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OCHOH$	0.51
$^{*}CH_{2}OCH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OHCH_{2}O$	0.73
$^{*}CH_{2}OCH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OCH_{2}OH$	1.10
$*CH_2OHCH_2O + H^+ + e^- \rightarrow *CH_3CH_2O-OH$	0.10
$^{*}CH_{2}OHCH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OHCH_{2}OH$	2.11
$*CH_{3}CH_{2}O-OH + H^{+} + e^{-} \rightarrow *OH + CH_{3}CH_{2}OH(1)$	-0.58
$^{*}CH_{3}CH_{2}O-OH + H^{+} + e^{-} \rightarrow ^{*}CH_{3}CH_{2}O+H_{2}O(l)$	-0.45
$*OH + H^+ + e^- \rightarrow *H_2O$	2.34

Table S18. The values of the free energy change ($\Delta G/eV$) at each step involved in Sc₂@BPN.

Reaction process	ΔG
$*CO + CO \rightarrow *CO.CO$	-1.01
*CO.CO → *COCO	0.28
$*COCO + H^+ + e^- \rightarrow *CHOCO$	0.41
$*COCO + H^+ + e^- \rightarrow *COHCO$	1.06
$*\text{COCO} + \text{H}^+ + e^- \rightarrow *\text{COCHO}$	-0.71
$*COCO + H^+ + e^- \rightarrow *COCOH$	1.34
$*COCHO + H^+ + e^- \rightarrow *CHOCHO$	-0.55
$*COCHO + H^+ + e^- \rightarrow *COHCHO$	0.89
$*COCHO + H^+ + e^- \rightarrow *COCH_2O$	-0.40
$*COCHO + H^+ + e^- \rightarrow *COCHOH$	0.85
*CHOCHO + H^+ + $e^ \rightarrow$ *CH ₂ OCHO	-0.44
*CHOCHO +H ⁺ + $e^- \rightarrow$ *CHOHCHO	0.55
*CHOCHO +H ⁺ + $e^- \rightarrow$ *CHOCH ₂ O	-0.05
*CHOCHO + H^+ + $e^ \rightarrow$ *CHOCHOH	0.99
*CH ₂ OCHO +H ⁺ +e ⁻ \rightarrow *CH ₂ OHCHO	0.75
$^{*}CH_{2}OCHO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OCH_{2}O$	-0.42
$^{*}CH_{2}OCHO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OCHOH$	1.09
$^{*}CH_{2}OCH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OHCH_{2}O$	1.37
$^{*}CH_{2}OCH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OCH_{2}OH$	1.19
$^{*}CH_{2}OCH_{2}OH + H^{+} + e^{-} \rightarrow ^{*}CH_{3}CH_{2}O-OH$	-1.77
$^{*}CH_{2}OCH_{2}OH + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OHCH_{2}OH$	1.94
$^{*}CH_{3}CH_{2}O-OH + H^{+} + e^{-} \rightarrow ^{*}OH + CH_{3}CH_{2}OH(1)$	2.08
$^{*}CH_{3}CH_{2}O-OH + H^{+} + e^{-} \rightarrow ^{*}CH_{3}CH_{2}O+H_{2}O(1)$	1.45
$^{*}CH_{3}CH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{3}CH_{2}OH$	2.12

Table S19. The values of the free energy change ($\Delta G/eV$) at each step involved in V₂@BPN.

Reaction process	ΔG	
$*CO + H^+ + e^- \rightarrow *CHO$	0.59	
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{O}$	-0.28	
$^{*}CH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OH$	0.25	
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	0.52	
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2} + \mathrm{H}_{2}\mathrm{O}(\mathrm{l})$	-0.20	
$*CH_2 + CO \rightarrow *CH_2CO$	-0.76	
$^{*}\mathrm{CH}_{2}\mathrm{CO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{CHO}$	-0.61	
$^{*}\mathrm{CH}_{2}\mathrm{CO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{COH}$	0.05	
$^{*}CH_{2}CHO + H^{+} + e^{-} \rightarrow ^{*}CH_{3}CHO$	0.16	
$^{*}\mathrm{CH}_{2}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{O}$	0.79	
$^{*}CH_{2}CHO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CHOH$	0.38	
$^{*}CH_{3}CHO + H^{+} + e^{-} \rightarrow ^{*}CH_{3}CH_{2}O$	0.06	
$^{*}CH_{3}CHO + H^{+} + e^{-} \rightarrow ^{*}CH_{3}CHOH$	0.30	
$^{*}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{OH}$	0.56	

Table S20. The values of the free energy change ($\Delta G/eV$) at each step involved in Ni₂@BPN.

Reaction process	ΔG
$*CO + H^+ + e^- \rightarrow *CHO$	0.46
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{O}$	-0.45
$*CHO + H^+ + e^- \rightarrow *CHOH$	0.03
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{O}$	-0.30
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	-0.34
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	0.30
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2} + \mathrm{H}_{2}\mathrm{O}(\mathrm{l})$	-0.10
$*CH_2 + CO \rightarrow *CH_2CO$	-0.34
$^{*}\mathrm{CH}_{2}\mathrm{CO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{CO}$	-0.30
$^{*}\mathrm{CH}_{2}\mathrm{CO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{COH}$	-0.50
$^{*}CH_{2}COH + H^{+} + e^{-} \rightarrow ^{*}CH_{3}COH$	0.57
$^{*}CH_{2}COH + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CHOH$	0.42
$^{*}CH_{2}COH + H^{+} + e^{-} \rightarrow ^{*}CH_{2}C + H_{2}O(1)$	0.73
$^{*}\mathrm{CH}_{2}\mathrm{CHOH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{CHOH}$	-0.09
$^{*}\mathrm{CH}_{2}\mathrm{CHOH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH}$	-0.73
$^{*}CH_{2}CHOH + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CH + H_{2}O(1)$	-0.97
$^{*}\mathrm{CH}_{2}\mathrm{CH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{CH}_{2}$	-0.12

Table S21. The values of the free energy change ($\Delta G/eV$) at each step involved in Cu₂@BPN.

Reaction process	ΔG
$*CO + H^+ + e^- \rightarrow * CHO$	-0.19
*CHO + CO \rightarrow *CHO.CO	-0.23
*CHO.CO \rightarrow *CHOCO	-0.06
*CHOCO + H^+ + $e^ \rightarrow$ *CHOHCO	-0.97
*CHOCO + H^+ + $e^ \rightarrow$ *CHOCHO	-2.39
$*CHOCO + H^+ + e^- \rightarrow *CHOCOH$	-0.73
$^{*}CHOCHO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OCHO$	0.59
$^{*}\mathrm{CHOCHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CHOHCHO}$	1.04
*CHOCHO +H ⁺ + $e^- \rightarrow$ *CHOCH ₂ O	0.57
*CHOCHO +H ⁺ + $e^- \rightarrow$ *CHOCHOH	1.09
$^{*}\mathrm{CHOCH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OCH}_{2}\mathrm{O}$	-0.53
*CHOCH ₂ O +H ⁺ + $e^- \rightarrow$ *CHOHCH ₂ O	0.53
$^{*}\mathrm{CHOCH}_{2}\mathrm{O}+^{+}\mathrm{H}^{+}+\mathrm{e}^{-}\rightarrow ^{*}\mathrm{CHOCH}_{2}\mathrm{OH}$	0.59
$^{*}CH_{2}OCH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OHCH_{2}O$	0.63
$^{*}CH_{2}OCH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OCH_{2}OH$	0.51
$^{*}\mathrm{CH}_{2}\mathrm{OCH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{O}\text{-}\mathrm{OH}$	-1.72
$^{*}CH_{2}OCH_{2}OH + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OHCH_{2}OH$	2.26
$^{*}CH_{3}CH_{2}O-OH + H^{+} + e^{-} \rightarrow ^{*}OH + CH_{3}CH_{2}OH(1)$	1.31
$^{*}CH_{3}CH_{2}O-OH+H^{+}+e^{-} \rightarrow ^{*}CH_{3}CH_{2}O+H_{2}O(l)$	1.51
$*OH + H^+ + e^- \rightarrow *H_2O$	2.25

Table S22. The values of the free energy change ($\Delta G/eV$) at each step involved in Y₂@BPN.

Reaction process	ΔG
$*CO + CO \rightarrow *CO.CO$	-0.69
$*CO.CO \rightarrow *COCO$	-0.30
$*COCO + H^+ + e^- \rightarrow *CHOCO$	-1.04
$*COCO + H^+ + e^- \rightarrow *COHCO$	1.08
$*\text{COCO} + \text{H}^+ + \text{e}^- \rightarrow *\text{COCHO}$	0.50
$*\text{COCO} + \text{H}^+ + \text{e}^- \rightarrow *\text{COCOH}$	0.96
$^{*}CHOCO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OCO$	0.6
$*CHOCO + H^+ + e^- \rightarrow *CHOHCO$	0.89
$*CHOCO + H^+ + e^- \rightarrow *CHOCHO$	-0.16
$^{*}\mathrm{CHOCO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CHOCOH}$	0.88
$^{*}\mathrm{CHOCHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OCHO}$	-0.13
$^{*}\mathrm{CHOCHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CHOHCHO}$	0.93
$^{*}\mathrm{CHOCHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CHOCH}_{2}\mathrm{O}$	-0.12
$^{*}\mathrm{CHOCHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CHOCHOH}$	1.49
$^{*}\mathrm{CH}_{2}\mathrm{OCHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OHCHO}$	0.94
$^{*}\mathrm{CH}_{2}\mathrm{OCHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OCH}_{2}\mathrm{O}$	-0.49
$^{*}CH_{2}OCHO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OCHOH$	1.25
$^{*}\mathrm{CH}_{2}\mathrm{OCH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OHCH}_{2}\mathrm{O}$	1.50
$^{*}CH_{2}OCH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OCH_{2}OH$	1.37
$^{*}CH_{2}OCH_{2}OH + H^{+} + e^{-} \rightarrow ^{*}CH_{3}CH_{2}O.OH$	-1.96
$^{*}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{O.OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{OH} + \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{OH}(\mathrm{l})$	2.01
$^{*}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{O.OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}_{2}\mathrm{O} \ (\mathrm{l})$	2.15
$*OH + H^+ + e^- \rightarrow *H_2O$	1.37

Table S23. The values of the free energy change ($\Delta G/eV$) at each step involved in Zr₂@BPN.

Reaction process	ΔG
$*CO + CO \rightarrow *CO.CO$	-0.86
$*CO.CO \rightarrow *COCO$	-0.37
$*COCO + H^+ + e^- \rightarrow *CHOCO$	0.52
$*COCO + H^+ + e^- \rightarrow *COHCO$	1.04
$*\text{COCO} + \text{H}^+ + e^- \rightarrow *\text{COCHO}$	-1.23
$*\text{COCO} + \text{H}^+ + \text{e}^- \rightarrow *\text{COCOH}$	1.06
$*COCHO + H^+ + e^- \rightarrow *CHOCHO$	0.04
$*COCHO + H^+ + e^- \rightarrow *COHCHO$	1.10
$*COCHO + H^+ + e^- \rightarrow *COCH_2O$	0.63
*COCHO +H ⁺ +e ⁻ \rightarrow *COCHOH	1.13
*CHOCHO + H^+ + $e^ \rightarrow$ *CH ₂ OCHO	-0.22
$^{*}\mathrm{CHOCHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CHOHCHO}$	1.63
$^{*}\mathrm{CHOCHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CHOCH}_{2}\mathrm{O}$	-0.21
$^{*}\mathrm{CHOCHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CHOCHOH}$	1.05
$^{*}\mathrm{CH}_{2}\mathrm{OCHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OHCHO}$	1.07
$^{*}\mathrm{CH}_{2}\mathrm{OCHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OCH}_{2}\mathrm{O}$	-0.65
$^{*}\mathrm{CH}_{2}\mathrm{OCHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OCHOH}$	1.17
$^{*}\mathrm{CH}_{2}\mathrm{OCH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OHCH}_{2}\mathrm{O}$	1.81
$^{*}\mathrm{CH}_{2}\mathrm{OCH}_{2}\mathrm{O}+\mathrm{H}^{+}+\mathrm{e}^{-}\rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OCH}_{2}\mathrm{OH}$	1.71
$^{*}CH_{2}OCH_{2}OH + H^{+} + e^{-} \rightarrow ^{*}CH_{3}CH_{2}O.OH$	-2.41
$^{*}CH_{2}OCH_{2}OH + H^{+} + e^{-} \rightarrow ^{*}CH_{2}OHCH_{2}OH$	1.83
$^{*}CH_{3}CH_{2}O.OH + H^{+} + e^{-} \rightarrow ^{*}OH + CH_{3}CH_{2}OH(1)$	2.39
$^{*}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{O.OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}_{2}\mathrm{O}(\mathrm{l})$	2.50
$^{*}OH + H^{+} + e^{-} \rightarrow ^{*}H_{2}O$	1.54

Table S24. The values of the free energy change ($\Delta G/eV$) at each step involved in Hf₂@BPN.

Reaction process	ΔG
$*CO + H^+ + e^- \rightarrow *CHO$	0.53
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{O}$	0.04
$^{*}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CHOH}$	0.17
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	0.26
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2} + \mathrm{H}_{2}\mathrm{O}(\mathrm{l})$	-0.12
$*CH_2 + CO \rightarrow *CH_2CO$	-1.33
$^{*}CH_{2}CO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CHO$	-0.05
$^{*}CH_{2}CO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}COH$	0.09
$^{*}CH_{2}CHO + H^{+} + e^{-} \rightarrow ^{*}CH_{3}CHO$	0.25
$^{*}CH_{2}CHO + H^{+} + e^{-} \rightarrow ^{*}CH_{2}CH_{2}O$	-0.03
$^{*}\mathrm{CH}_{2}\mathrm{CHO} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{CHOH}$	0.41
$^{*}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{O}$	-0.09
$^{*}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH}$	0.20
$^{*}CH_{3}CH_{2}O + H^{+} + e^{-} \rightarrow ^{*}CH_{3}CH_{2}OH$	0.59

Table S25. The values of the free energy change ($\Delta G/eV$) at each step involved in Ir₂@BPN.

Systems	PDS	ΔG_{max}	Products
Sc ₂ @BPN	$*CH_3O \rightarrow *CH_3OH$	2.34	CH ₃ OH
	$*OH \rightarrow *H_2O$	2.39	CH4
	$*OH \rightarrow *H_2O$	2.34	CH ₃ CH ₂ OH
Ti ₂ @BPN	$*CH_3O \rightarrow *CH_3OH$	2.17	CH ₃ OH
	$*OH \rightarrow *H_2O$	2.17	CH ₄
	$*CH_3O \rightarrow *CH_3OH$	2.47	CH ₃ OH
V2@BPN	$*OH \rightarrow *H_2O$	2.27	CH ₄
	$^{*}\mathrm{CH_{3}CH_{2}O} \rightarrow ^{*}\mathrm{CH_{3}CH_{2}OH}$	2.12	CH ₃ CH ₂ OH
Mn2@BPN	$*CH_3O \rightarrow *CH_3OH$	1.52	CH ₃ OH
	$*OH \rightarrow *H_2O$	2.13	CH ₄
Fe ₂ @BPN	$^{*}\mathrm{CH}_{2}\mathrm{OH} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	1.03	CH ₃ OH
	$*CH_3 \rightarrow *CH_4$	0.62	CH ₄
	$*CO \rightarrow *CHO$	0.59	CH ₃ OH
Ni2@BPN	$*CH_3 \rightarrow *CH_4$	0.67	CH ₄
	$*CO \rightarrow *CHO$	0.59	CH ₃ CH ₂ OH
Cu2@BPN	$*CO \rightarrow *CHO$	0.46	CH ₃ OH
	$*CH_3 \rightarrow *CH_4$	0.61	CH ₄
	$*CO \rightarrow *CHO$	0.46	CH ₂ CH ₂
Y2@BPN	$*CH_3O \rightarrow *CH_3OH$	1.90	CH ₃ OH
	$*OH \rightarrow *H_2O$	2.25	CH ₃ CH ₂ OH
Zr ₂ @BPN	$^{*}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{.OH} \rightarrow ^{*}\mathrm{OH}$	2.01	CH ₃ CH ₂ OH

Table S26. The PDS and Δ Gmax (eV) for products of CH₄, CH₃OH, CH₂CH₂, and CH₃CH₂OH on TM₂@BPN.

Nb2@BPN	$*CH_3O \rightarrow *CH_3OH$	1.37	CH ₃ OH
Hf ₂ @BPN	$^{*}\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{.OH} \rightarrow ^{*}\mathrm{OH}$	2.39	CH ₃ CH ₂ OH
Ta ₂ @BPN	$*OH \rightarrow *H_2O$	1.35	CH ₄
W2@BPN	$*CH_{3}O \rightarrow *CH_{3}OH$ $*CH_{2}-OH \rightarrow *CH_{2}$	0.89 1.65	CH ₃ OH CH ₄
Ir ₂ @BPN	*CO \rightarrow *CHO *CO \rightarrow *CHO	0.53 0.53	CH ₃ OH CH ₄
	$^{*}CH_{3}CH_{2}O \rightarrow ^{*}CH_{3}CH_{2}OH$	0.59	CH ₃ CH ₂ OH

Systems	Products	UL
Fe ₂ @BPN	CH ₄	-0.62
Ir ₂ @BPN	CH ₄	-0.53
Ni2@BPN	CH ₃ CH ₂ OH	-0.59
Cu ₂ @BPN	CH ₂ CH ₂	-0.46
$B_2@Bi^1$	CH4	-0.57
$Ru_2@C_2N^2$	CH ₄	-0.58
$Mn_2@Pc^3$	CH ₄	-0.84
Cu (100) ⁴	CH ₂ CH ₂	-0.72
$Cu_4@C_5N_2H_2^5$	CH ₂ CH ₂	-0.50
$Fe_2@C_2N^6$	CH ₂ CH ₂	-0.76
B@GRY ⁷	CH ₃ CH ₂ OH	-0.53
$\mathrm{Cu}_2\mathrm{B}_2{}^8$	CH ₃ CH ₂ OH	-0.59
$Cu_4@C_2N^9$	CH ₃ CH ₂ OH	-0.81

Table S27. The products and U_L for CORR on the selected Fe₂@BPN, Ni₂@BPN, Cu₂@BPN, and Ir₂@BPN in this work and the other systems in previous reports for comparison.

- 1. Y. Meng, Z. Xu, Z. Shen, Q. Xia, Y. Cao, Y. Wang and X. Li, *Journal of Materials Chemistry* A, 2022, **10**, 6508-6522.
- 2. X. Cui, W. An, X. Liu, H. Wang, Y. Men and J. Wang, *Nanoscale*, 2018, **10**, 15262-15272.
- 3. H. Shen, Y. Li and Q. Sun, *The Journal of Physical Chemistry C*, 2017, **121**, 3963-3969.
- 4. S. Hanselman, M. T. M. Koper and F. Calle-Vallejo, *ACS Energy Letters*, 2018, **3**, 1062-1067.
- 5. D. Zhang, O. V. Prezhdo and L. Xu, *Journal of the American Chemical Society*, 2023, **145**, 7030-7039.
- H. Liu, Q. Huang, W. An, Y. Wang, Y. Men and S. Liu, *Journal of Energy Chemistry*, 2021, 61, 507-516.
- P. Mano, S. Namuangruk and K. Takahashi, *The Journal of Physical Chemistry C*, 2023, 127, 7683-7694.
- J. Jia, H. Zhang, Z. Wang, J. Zhao and Z. Zhou, *Journal of Materials Chemistry A*, 2020, 8, 9607-9615.
- 9. Y. Wang, N. Ma, Y. Zhang, B. Liang and J. Fan, *Applied Surface Science*, 2023, **626**.