Supporting Information

Constructing Fe-N-doped porous carbon nanofiber for pH-universal ORR

and switchable superior Zn-air batteries

Yu Ma^{1,2}, Yuhan Xiao¹, Yanfeng Ge¹, Degong Gao³, Yunge Zhang¹, Zepeng Li^{1*} and Yingdong

Han^{1,2*}

¹ College of Science, Civil Aviation University of China, Tianjin, P. R. China

² Institute of Environment and Sustainable Development, Civil Aviation University of China,

Tianjin, P. R. China

³ Shandong Daisheng Construction Co., Ltd, Taian, P. R. China

*Corresponding author: E-mail: hansuo@126.com (Y. Han)

E-mail: li_zepeng@163.com (Z. Li)

Experimental Section

Chemical reagents and raw materials: Bacterial cellulose (BC) dispersion was kindly provided by Hainan Yeguo Foods Co., Ltd., Hainan, China. FeCl₃·6H₂O, Zn(NO₃)₂·6H₂O, 2methylimidazole (2-MIM) and tert-butyl alcohol (TBA) were purchased from Aladdin and directly used without further purification. The commercial Pt/C catalyst (20 wt%), 0.1 M phosphate buffered saline (PBS, pH 7.4) and Nafion solution (5 wt%) were acquired from Sigma-Aldrich. All the water used in the present study was deionized water.

Preparation of Fe(Zn)-N-C: Bacterial cellulose nanofibers were chemical treatments via an improved 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) method according to our previous work¹. The TEMPO-mediated cellulose nanofibers were named as TOBC. The $Zn(NO_3)_2 \cdot 6H_2O$ (86 mg) was mixed with a suspension of ion-exchanged TOBC (25 mL BC) immediately. Then mixtures were washed by deionized water five times. The product was poured into 25 mL of 5:1 (v:v) water/TBA mixture, followed by stirring at room temperature (R.T.) for 2 h. The aqueous suspension was added into FeCl₃·6H₂O (50 mg), Zn(NO₃)₂·6H₂O (255.8 mg) and 2-MIM (2824.6 mg) together and followed by stirring for 15 minutes, then through centrifugation, repetitive rinsing by deionized water and freeze-drying for 48 h. Finally, the mixture was pyrolyzed in Ar atmosphere separately at 900 °C for 2 h. The corresponding carbon aerogels were denoted as Fe(Zn)-N-C.

Synthesis of control samples: (1) Mesoporous carbon (CF) was synthesized in parallel by the same method as that for Fe(Zn)-N-C, except for no using FeCl₃·6H₂O, Zn(NO₃)₂·6H₂O and 2-MIM. (2) Fe-N-C was obtained in parallel by the same synthesis route as that for Fe(Zn)-N-C, except for no addition of Zn(NO₃)₂·6H₂O. (3) (Zn)-N-C was prepared in parallel by the same way as that Fe(Zn)-N-C, except for no applying for FeCl₃·6H₂O. (4) Fe(Zn)-N-C-*x* (*x*=1, 2, 3), where x indicates the different amount of FeCl₃·6H₂O (35, 50 and 65 mg). Unless otherwise specified, Fe(Zn)-N-C refers to the sample prepared at x=2 (FeCl₃·6H₂O, 50 mg).

Microstructural Characterization: The as-prepared samples were examined by transmission electron microscopy (TEM, JEM-2100F, JEOL, Japan) to character the morphologies and the microstructures. X-ray powder diffraction (XRD, D8 Advance, Bruker, Germany) with Cu-K α radiation (λ =1.5406 Å) and Raman spectroscopy (Renishaw inVia, UK Raman spectrometer system) with a laser wavelength of 532 nm investigated to obtain the crystal structure of all samples. The chemical compositions of samples were studied by X-ray photoelectron spectroscopy (XPS, ES-CALAB 250Xi, Thermo Fisher Scientific, America). N₂ sorption isotherms were determined by the Tristar II (Micrometrics, ASAP 2020 HD88) at 77 K. The specific surface area (SSA) was calculated using Brunauer-Emmett-Teller (BET) model. Pore size distribution was analyzed by Barrett-Joyner-Halenda (BJH) model based on the adsorption data.

Electrochemical performance characterization: The ORR electrochemical tests were carried out by using electrochemical workstation (CHI 760E, CH Instruments Inc., Shanghai, China) with a rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) with a Pt ring in a standard three-electrode cell at room temperature. A graphite rod was employed for counter electrode, glassy carbon (RDE or RRDE) coated with catalytic material as the working electrode and reference electrode of Hg/HgO for tests in 0.1 M KOH and 0.1 M PBS buffer (pH 7.4), reference electrode of Ag/AgCl in 0.5 M H₂SO₄. All recorded potentials are given relative to a reversible hydrogen electrode (RHE) by experimental calibrations: Pt foil was used as both the working electrode and counter electrode, and the electrolyte was saturated with H₂ provided by hydrogen generator. Our result shows that the E(Ag/AgCl) is lower than E(RHE) by 0.222 V in 0.5 M H₂SO₄, E(Hg/HgO) by 0.882 V in 0.1 M KOH and 0.557 V in 0.1 M PBS.

The working electrode was prepared as follows: 4 mg of as-fabricated catalysts was first dispersed in the mixture of deionized water, ethanol and 5% Nafion (6:3:1) by sonication for 30 min in an ice-water bath. Then 5 μ l of the ink was dropped on the polished glassy carbon electrode (RDE) to obtain catalysts loading of 0.28 mg cm⁻² (8.9 μ l of the ink for the RRDE)

and dried 1 hour in the air. For comparison, commercial Pt/C (20 wt%) catalyst was also measured with loading of 25 μ gpt cm⁻².

Before each ORR testing, the system was saturated with O_2 to remove the surface contamination of the catalysts in 0.1 M KOH, 0.5 M H₂SO₄ and 0.1 M PBS solutions, respectively. Cyclic voltammetry (CV) curves were recorded at a scan rate of 20 mV s⁻¹ in N₂⁻ or O₂-saturated electrolytes. Linear sweep voltammetry (LSV) was collected at a scan rate of 10 mV s⁻¹ at a different rotation speed of 400-2025 rpm. Rotating ring-disk electrode (RRDE) measurements were performed at a rotating speed of 1600 rpm with a scan rate of 10 mV s⁻¹ and the ring potential was fixed at 1.4 V versus RHE.

The kinetics parameters were evaluated using the Koutecky-Levich (K-L) equation as follows:

$$\frac{1}{j} = \frac{1}{j_{\rm L}} + \frac{1}{j_{\rm K}} = \frac{1}{B\omega^{1/2}} + \frac{1}{j_{\rm K}}$$

$$B = 0.62 \ nFC_0 (D_0)^{2/3} v^{-1/6}$$
(2)

where j, j_L and j_K are the measured, diffusion-limiting and kinetic current densities, respectively. ω is the electrode rotation rate in rpm; F is the Faraday constant (F = 96485 C mol⁻¹); C_0 is the bulk concentration of O₂ (1.2 × 10⁻⁶ mol cm⁻³); D_0 is the diffusion coefficient of O₂ (1.9 × 10⁻⁵ cm² s⁻¹); v represents the kinematic viscosity of the electrolyte (0.01 cm² s⁻¹).

In order to plot the Tafel curves, the kinetic current was calculated from the mass-transport correction of the RDE using:

$$j_{\rm K} = \frac{j \times j_{\rm L}}{j_{\rm L} - j} \tag{3}$$

For RRDEs, the peroxide (H_2O_2) content and the transferred electron number (*n*) relative to the total products was determined based on the following equations:

$$n = 4 \times \frac{I_{\rm D}}{I_{\rm R}}$$

$$H_2 O_2(\%) = 200 \times \frac{I_{\rm R}/N}{I_{\rm R}}$$
(4)
(5)

where I_D and I_R represent the disk current and the value of ring current, respectively, and N=0.37 is the current collection efficiency of the Pt ring.

The double layer capacitances were carried out by CV in a potential range from 1.092 V to 1.192 V vs. RHE in 0.1 M KOH solution. The scan rates were measured from 10 mV s⁻¹ to 100 mV s⁻¹. The C_{dl} can be determined by calculating the half of the slope by plotting the Δj $(j_a - j_c)$ at 1.142 V vs. RHE against the scan rates. Furthermore, electrochemical impedance spectroscopy (EIS) was performed in the frequency range of 0.01 Hz to 1 M Hz in O₂-saturated 0.1 M KOH, 0.5 M H₂SO₄ and 0.1 M PBS solutions, respectively, while perturbation amplitude was set to 5 mV. The durability measurement of the as-prepared catalysts was performed by applying a constant potential at a rotating rate of 1600 rpm.

Liquid Zn-air battery assembly: Zn-air batteries were tested on home-made alkaline/neutral electrochemical cells, where Zn foil as active anode, 6 M KOH was used as the alkaline electrolyte and 4 M NH₄Cl+2 M KCl as the neutral electrolyte. For Pt/C and Fe(Zn)-N-C samples, 5 mg catalyst was ultrasonically dispersed in 1 mL ethanol with 100 μ L 5% Nafion to form a homogenous ink. The catalyst ink was then dropped on a cleaned carbon cloth (1.0 mg cm⁻²), which could be explored as air cathode (without the addition of conductive carbon black). All measurements were carried out on the as-fabricated cell with a CHI760E workstation and LAND multi-channel battery testing system (CT2001A, Wuhan, China) at room temperature.

The specific capacity $(C, \text{mAh g}^{-1})$ was calculated according to the following equation:

$$C = \frac{I \Delta t}{m_{Zn}}$$
 (6)
where *I* (mA) represents the current, Δt (h) is the service time and m_{Zn} (g)

is the weight of the consumed Zn anode.

Fig. S1. Schematic illustration for the synthesis of sample Fe(Zn)-N-C.

Fig. S2. XRD patterns of samples CF, Fe-N-C, (Zn)-N-C and Fe(Zn)-N-C.

Fig. S3. (a) XPS survey and (b) Zn 2p spectra of Fe(Zn)-N-C catalyst.

Fig. S4. CV curves of as-prepared catalysts in O_2/N_2 -saturated 0.1 M KOH.

Fig. S5. Nyquist plots of Fe(Zn)-N-C and control samples in O_2 saturated 0.1 M KOH solution.

Fig. S6. (a, c, e) LSV curves at different rotating rates and (b, d, e) Koutecky-Levich (K-L) plots of the Fe(Zn)-N-C catalyst in O_2 saturated 0.1 M KOH, 0.5 H_2SO_4 and 0.1 M PBS solutions, respectively.

Fig. S7. CV curves of (a) Fe(Zn)-N-C, (b) (Zn)-N-C, (c) Fe-N-C, (d) CF at different scan rate; (e) Current density differences plotted against scan rates of various catalysts.

Fig. S8. Electron transfer number and peroxide yield derived from RRDE of the Fe(Zn)-N-C and Pt/C catalysts in O_2 saturated 0.1 M KOH, 0.5 M H_2SO_4 and 0.1 M PBS solutions,

respectively.

Fig. S9. Chronoamperometric response curves of Fe(Zn)-N-C and Pt/C catalysts before and after the addition of 3 mL methano about 400 s in O₂ saturated 0.1 M KOH, 0.5 M H₂SO₄ and 0.1 M PBS solutions, respectively.

Fig. S10. TEM images of the Fe(Zn)-N-C catalyst after ORR stability test in 0.1 M KOH solution.

Fig. S11. High-resolution XPS spectra of (a) C 1s, (b) N 1s, (c) Fe 2p and (d) Zn 2p for Fe(Zn)-N-C catalyst after ORR stability test in 0.1 M KOH solution.

Fig. S12. (a) CV curves, (b) Nyquist plots of Fe(Zn)-N-C and Pt/C catalysts in 0.5 M H_2SO_4 solution.

Fig. S13. (a) CV curves, (b) Nyquist plots of Fe(Zn)-N-C and Pt/C catalysts in 0.1 M PBS solution.

Fig. S14. TEM images of the Fe(Zn)-N-C catalyst after ORR stability test in 0.5 M H_2SO_4 solution.

Fig. S15. High-resolution XPS spectra of (a) C 1s, (b) N 1s, (c) Fe 2p and (d) Zn 2p for Fe(Zn)-N-C catalyst after ORR stability test in $0.5 \text{ M H}_2\text{SO}_4$ solution.

Fig. S16. TEM images of the Fe(Zn)-N-C catalyst after ORR stability test in 0.1 M PBS

solution.

Fig. S17. High-resolution XPS spectra of (a) C 1s, (b) N 1s, (c) Fe 2p and (d) Zn 2p for Fe(Zn)-N-C catalyst after ORR stability test in 0.1 M PBS solution.

Fig. S18. (a-c) ORR polarization curves of Fe(Zn)-N-C and Pt/C catalysts with or without 10 mM KSCN, (d-f) before and after hot acid etching in O_2 -saturated 0.1 M KOH, 0.5 M H_2SO_4 and 0.1 M PBS solutions, respectively.

Fig. S19. TEM images of Fe(Zn)-N-C treated by hot acid etching.

Fig. S20. LSV curves of ORR for the Fe catalysts pyrolyzed from the precursors of different Fe concentrations (FeCl₃·6H₂O concentration: 35, 50 and 65 mg) at a rotating rate of 1600 rpm in O₂-saturated 0.1 M KOH, 0.5 M H₂SO₄ and 0.1 M PBS solutions, respectively.

Catalysts	<i>E</i> _{1/2} (V vs. RHE)	Limiting current density (mA cm ⁻²)	Tafel slop (mV dec ⁻¹)	Current retention after 86400 s chronoampero metric test (%)	Electrolyte
CF	0.62	3.02	100	-	
(Zn)-N-C	0.76	4.51	80	-	
Fe-N-C	0.65	4.21	94	-	0.1 M KOH
Fe(Zn)-N-C	0.86	6.16	66	85	
Pt/C	0.82	5.68	75	63	
Fe(Zn)-N-C	0.74	5.81	61	80	
Pt/C	0.78	4.74	91	48	0.5 M H ₂ SO ₄
Fe(Zn)-N-C	0.67	5.26	76	82	
Pt/C	0.61	4.65	131	56	0.1 M PBS

Table S1. The ORR performance of CF, (Zn)-N-C, Fe-N-C, Fe(Zn)-N-C and Pt/C catalysts in

 $\mathrm{O}_2\text{-saturated}$ 0.1 M KOH, 0.5 M $\mathrm{H}_2\mathrm{SO}_4$ and 0.1 M PBS solutions.

Catalysts	<i>E</i> _{1/2} (V vs. RHE)	Tafel slop (mV dec ⁻¹)	Stability	Ref.
Fe/Fe ₃ C@C	0.831	87	94% retention after 20,000s	2
Fe-N-C/Fe ₃ C-op	0.911	83.4	95% retention after 43,200s	3
SA-Ir/NC	0.84	65.1	$E_{1/2}$ of 10 mV shift after 20,000 cycles	4
NC@Co-HPNC	0.83	87.63	$E_{1/2}$ of 5 mV shift after 2,000 cycles	5
FeNPC	0.904	84	92.2% retention after 36,000s	6
Fe _H -N-C	0.91	58	$E_{1/2}$ of 29 mV shift after 100,000 cycles	7
CuCo-NC/NPs	0.87	64.3	93% retention after 72,000s	8
Fe SA/NCZ	0.87	70	$E_{1/2}$ of 10 mV shift after 10,000 cycles	9
Feo.5Co@HOMNCP	0.903	82	96.4% retention after 36,000s	10
Fe(Zn)-N-C	0.86	66	85% retention after 86,400s	This work

Table S2. Comparison of ORR performance of Fe(Zn)-N-C catalyst with non-preciouselectrocatalysts in 0.1 M KOH.

Catalysts	Electrolyte	<i>E</i> _{1/2} (V vs. RHE)	Tafel slop (mV dec ⁻¹)	Stability	Ref.
Fe-pyridinic N-C	0.1 M HClO ₄	0.825	63.8	83.4% retention after 28,800s	11
PNC-30	0.1 M HClO ₄	0.76	65	93.2% retention after 20,000s	12
H-S-Fe-NC	0.1 M HClO ₄	0.782	-	91.8% retention after 36,000s	13
Co _x Fe _y @N-C	0.5 M H ₂ SO4	0.83	97	$E_{1/2}$ of 18 mV shift after 5,000 cycles	14
Fe/Ni-N-PCS	0.1 M HClO ₄	0.71	126	-	15
Fe@MNC-OAc	0.1 M HClO ₄	0.838	70.4	96.27% retention after 15,000s	16
Fe ₁ NGF	0.1 M HClO ₄	0.813	74	Slight shift of $E_{1/2}$ after 5,000 cycles	17
Mn-Fe@NCNTs	0.1 M HClO ₄	0.76	78.5	90.1% retention after 29,000s	18
D-MN4-CNF-IL- A	0.5 M H ₂ SO4	0.71	61	~86% retention after 43,200s	19
Fe(Zn)-N-C	0.5 M H ₂ SO4	0.74	61	80% retention after 86,400s	This work

 Table S3. Comparison of ORR performance of Fe(Zn)-N-C catalyst with non-precious

 electrocatalysts in acidic media.

Catalysts	<i>E</i> _{1/2} (V vs. RHE)	Tafel slop (mV dec ⁻¹)	Stability	Ref.
NiFe ₂ O ₄ /FeNi ₂ S ₄ HNSs	0.507	-	almost no decay after 5,000 cycles	20
Fe-N-C/800- HT2	0.743	91	89.4% retention after 28,800s	21
G/C-Fe-2	-	-	78.7% retention after 10,000s	22
FePc@CTS	0.057V vs. Ag/AgCl	51.3	-	23
eFe-N ₃ /PCF	0.72	-	89.9% retention after 10,000s	24
Fe _x N/NC-7	0.80	-	-	25
Fe SAs/NC	0.75	67.4	-	26
5%Fe-N/C	0.64	-	-	27
Fe(Zn)-N-C	0.61	76	82% retention after 86,400s	This work

 Table S4. Comparison of ORR performance of Fe(Zn)-N-C catalyst with non-precious

 electrocatalysts in neutral media.

Catalysts	Alkaline $E_{1/2}$ (V vs. RHE)	Acidic $E_{1/2}$ (V vs. RHE)	Neutral $E_{1/2}$ (V vs. RHE)	Ref.
CeNCs	0.9	0.83	0.78	28
γ-Fe ₂ O ₃ @CNFs-12	0.905	0.693	0.58	29
FeSA/PNC	0.92	0.84	0.83	30
Fe/Fe ₃ C/NHCS	0.84	0.67	0.71	31
MFS-Fe-0.7	0.83	0.64	0.76	32
Fe–N/C	0.823	0.661	positive than Pt/C catalyst	33
Fe/NC-3	0.90 (1 M KOH)	0.71	0.69	34
Fe-Zn-SA/NC	0.85	0.78	0.72	35
Fe-NX@NSCST-ZL	0.94	0.77	0.74	36
Fe(Zn)-N-C	0.86	0.74	0.61	This work

Table S5. Comparison of $E_{1/2}$ of Fe(Zn)-N-C catalyst with pH-universal non-precious electrocatalysts in alkaline, acidic and neutral media.

Catalysts	Electrolyte	Power Density (mW cm ⁻²)	Specific capacity@10 mA cm ⁻² (mAh g ⁻¹)	Ref.	
E. (1 CN	6 M KOH +0.2 M Zn(Ac) ₂	144	770	. 27	
re ₁ /a-CN	4 M NH ₄ Cl+2 M KCl	34	653	57	
Fc@Fe_	6 М КОН	196	769@100 mA cm ⁻²	38	
NHCS	4 M NH ₄ Cl+1 M KCl	58	-	- 38	
	6 M KOH+0.15 M ZnO	107	-		
Fe-NBrGo ·	4 M NH4Cl+2 M KCl	34	-	39	
	6 M KOH	158.5	-	40	
NHCS $(a)B_1P_2$	4 M NH ₄ Cl+1 M KCl	104.6	-	40	
Fe-	6 M KOH	278.97	-	. 11	
600 NC@NHCS-	4 M NH ₄ Cl+1 M KCl	114.96	-	- 41	
FeCo	6 M KOH	207	741@5 mA cm ⁻²	42	
GC	3 M Zn(TFSI) ₂	162	813@2 mA cm ⁻²	42	
SA-Ir/NC	0.1 M PBS+ 0.02 M Zn(CH ₃ COO) ₂	76	776.8 @20 mA cm ⁻²	4	
Eq(7n) N C	6 M KOH	193	800	This	
гс(Zn)-N-С	4 M NH ₄ Cl+2 M KCl	48	688	work	

 Table S6. Comparison of reported alkaline/neutral liquid Zn-air batteries based on well

 developed non-precious oxygen catalysts .

Reference

- 1. Y. Ma, D. Chen, Z. Fang, Y. Zheng, W. Li, S. Xu, X. Lu, G. Shao, Q. Liu and W. Yang, Proc. Natl. Acad. Sc.i U. S. A., 2021, **118**, e2105610118.
- 2. W. Dong, T. Wang, W. Yang, K. Song and Z. Zou, Electrochem. Commun., 2023, **150**, 107477.
- 3. J. Chang, Q. Zhang, J. Yu, W. Jing, S. Wang, G. Yin, G. I. N. Waterhouse and S. Lu, Adv. Sci., 2023, **10**, 2301656.
- 4. X. Luo, M. Yang, W. Song, Q. Fang, X. Wei, L. Jiao, W. Xu, Y. Kang, H. Wang, N. Wu, W. Gu, L. Zheng, L. Hu and C. Zhu, Adv. Funct. Mater., 2021, **31**, 2101193.
- 5. Z. Chi, Y. Feng, Y. Ma, D. Kong, H. Yin, S. Li, L. Li, Z. Guo and L. Wang, Chem. Commun. (Camb), 2021, **57**, 11248-11251.
- 6. L. Fan, X. Wei, X. Li, Z. Liu, M. Li, S. Liu, Z. Kang, F. Dai, X. Lu and D. Sun, Nano Research, 2022, **16**, 1810-1819.
- 7. H. Tian, A. Song, P. Zhang, K. Sun, J. Wang, B. Sun, Q. Fan, G. Shao, C. Chen, H. Liu, Y. Li and G. Wang, Adv. Mater., 2023, **35**, e2210714.
- 8. J. Feng, D. Zheng, R. Yin, X. Niu, X. Xu, S. Meng, S. Ma, W. Shi, F. Wu, W. Liu and X. Cao, Small Struct., 2023, **4**, 2200340.
- 9. C. Jiao, Z. Xu, J. Shao, Y. Xia, J. Tseng, G. Ren, N. Zhang, P. Liu, C. Liu, G. Li, S. Chen, S. Chen and H. L. Wang, Adv. Funct. Mater., 2023, **33**, 2213897.
- 10. W. Li, B. Liu, D. Liu, P. Guo, J. Liu, R. Wang, Y. Guo, X. Tu, H. Pan, D. Sun, F. Fang and R. Wu, Adv. Mater., 2022, **34**, e2109605.
- 11. L. Li, Y. Wen, G. Han, Y. Liu, Y. Song, W. Zhang, J. Sun, L. Du, F. Kong, Y. Ma, Y. Gao, J. Wang, C. Du and G. Yin, Chem. Eng. J., 2022, **437**, 135320.
- 12. B. Liu, F. Liu, D. Lu, S. Zhang, C. Zhang, Z. Gao, L. Shi, Y. Liu, J. X Shi, L. Zhang, S. Zhao and D. Liu, Chem. Eng. J., 2022, **430**, 132762.
- J. Yan, T. Gu, R. Shi, X. Chen, M. H. Rümmeli and R. Yang, J. Mater. Chem. A, 2023, 11, 16180-16189.
- 14. J. Liu, Z. P. Li and B. H. Liu, J. Alloy. Compd., 2023, 944, 169166.
- 15. J. Zhao, L. Zong, L. Cui, F. Lu, Z. Xiao and L. Wang, J. Colloid Interface Sci., 2023, 633, 828-835.
- 16. Y. Liu, F. Tu, Z. Zhang, Z. Zhao, P. Guo, L. Shen, Y. Zhang, L. Zhao, G. Shao and Z. Wang, Appl. Catal. B-Environ., 2023, **324**, 122209.
- 17. F. Li, G.-F. Han, W. Che, J.-M. Seo, W. Zou, H. Liu, I. Ahmad, Z. Fu, Y. Lu and J.-B. Baek, Nano Energy, 2023, **114**, 108647.
- X. Guo, S. Xue, X. Zhang, J. Qin, M. Hong, Q. Chen, W. Liu, C. Du and J. Chen, J. Alloy. Compd., 2023, 953, 169992.
- 19. K. Muuli, M. Mooste, S. Akula, V. Gudkova, M. Otsus, A. Kikas, J. Aruväli, A. Treshchalov, V. Kisand, A. Tamm, A. Krumme, S. Cavaliere and K. Tammeveski, ChemElectroChem, 2023, **10**, e202300131.
- L. An, Z. Zhang, J. Feng, F. Lv, Y. Li, R. Wang, M. Lu, R. B. Gupta, P. Xi and S. Zhang, J. Am. Chem. Soc., 2018, 140, 17624-17631.
- 21. G. Zhang, L. Li, M. Chen and F. Yang, J. Mater. Chem. A, 2020, 8, 9256-9267.
- 22. H. Wang, L. Wei and J. Shen, Int. J. Hydrogen Energy, 2022, 47, 17982-17991.
- 23. Y. Zhang, J. Li, W. Yang, J. Zhang, Q. Fu, Y.-C. Song, Z. Wei, Q. Liao and X. Zhu, Electrochim. Acta, 2020, **363**, 137177.
- 24. J. Liu, Z. Gong, C. Allen, W. Ge, H. Gong, J. Liao, J. Liu, K. Huang, M. Yan, R. Liu, G. He, J. Dong, G. Ye and H. Fei, Chem Catalysis, 2021, 1, 1291-1307.
- 25. X. Hu, Y. Min, L. L. Ma, J. Y. Lu, H.C. Li, W.J. Liu, J.J. Chen and H.Q. Yu, Appl. Catal.

B-Environ., 2020, 268, 118405.

- 26. Z. Li, S. Ji, C. Xu, L. Leng, H. Liu, J. H. Horton, L. Du, J. Gao, C. He, X. Qi, Q. Xu and J. Zhu, Adv. Mater., 2023, **35**, 2209644.
- 27. L.Q. Yu, H. Wang, S.L. Chen, T.E. Wen, B.C. Huang and R.C. Jin, Chinese Chem. Lett., 2023, **34**, 107236.
- 28. Y. Zhao, H. Wang, J. Li, Y. Fang, Y. Kang, T. Zhao and C. Zhao, Adv. Funct. Mater., 2023, 2305268.
- Z. Yao, Y. Li, D. Chen, Y. Zhang, X. Bao, J. Wang and Q. Zhong, Chem. Eng. J., 2021, 415, 129033.
- 30. W. Xue, Q. Zhou, X. Cui, J. Zhang, S. Zuo, F. Mo, J. Jiang, X. Zhu and Z. Lin, Angew Chem. Int. Ed. Engl., 2023, **62**, e202307504.
- 31. Y. Liu, X. Wang, B. Zhao, X. Shao and M. Huang, Chem.- Eur. J., 2019, 25, 9650-9657.
- 32. F. Zhang, Y. Chen, Y. Liu, X. Liu and S. Gao, Int. J. Hydrogen Energ., 2021, **46**, 37895-37906.
- 33. X. Luo, W. Han, W. Du, Z. Huang, Y. Jiang and Y. Zhang, J. Power Sources, 2020, **469**, 228184
- 34. M. Liu, J. Lee, T. C. Yang, F. Zheng, J. Zhao, C. M. Yang and L. Y. S. Lee, Small Methods, 2021, 5, e2001165.
- 35. J. Xu, S. Lai, D. Qi, M. Hu, X. Peng, Y. Liu, W. Liu, G. Hu, H. Xu, F. Li, C. Li, J. He, L. Zhuo, J. Sun, Y. Qiu, S. Zhang, J. Luo and X. Liu, Nano Research, 2020, 14, 1374-1381.
- 36. C. Li, Y. Zhang, M. Yuan, Y. Liu, H. Lan, Z. Li, K. Liu and L. Wang, Chem. Eng. J., 2023, **471**, 144515.
- M. Zhao, H. Liu, H. Zhang, W. Chen, H. Sun, Z. Wang, B. Zhang, L. Song, Y. Yang, C. Ma, Y. Han and W. Huang, Energy Environ. Sci., 2021, 14, 6455-6463.
- 38. K. Sheng, J. Li, G. Li, J. Hao, Y. Wang, Y. Liu, Y. Liu, Q. Yi and W. Li, Appl. Surf. Sci., 2022, **601**, 154221.
- 39. Y. Irmawati, F. Balqis, P. B. Persada, F. Destyorini, R. Yudianti, F. Iskandar and A. Sumboja, Batteries, 2023, 9, 356.
- 40. Y. Wang, A. Chen, C. Fang and Q. Yi, Ind. Eng. Chem. Res., 2022, 61, 10969-10981.
- 41. Y. Wang, R. Yi, A. Chen, C. Fang, Y. Wang, Q. Yi, M. Liu, S. Liu, S. Zhan and B. Zhong, Energy Technol., 2022, **10**, 2200057.
- 42. N. K. Wagh, D. H. Kim, S. H. Kim, S. S. Shinde and J. H. Lee, ACS Nano, 2021, 15, 14683-14696.