Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Distribution of high valence Fe active sites in nickel-iron hydroxide catalysts for water oxidation

Peijia Ding^a, Qi Hu^{*a,b}, Ziwei Chai^c, Hong-Bo Zhou^a, Guang-Hong Lu^a, Gilberto Teobaldi^d, Annabella Selloni^{*e} and Li-Min Liu^{*a}

^a School of Physics, Beihang University, Beijing 100191, China

^b School of Chemistry, Beihang University, Beijing 100191, China

^c Department of Chemistry, University of Zurich, Zurich, Switzerland

^d Scientific Computing Department, STFC UKRI, Rutherford Appleton Laboratory, Harwell Campus, OX11 0QX Didcot, United Kingdom

^e Department of Chemistry, Princeton University, Princeton, NJ 08544, USA

Email: liminliu@buaa.edu.cn; huqi@buaa.edu.cn; aselloni@princeton.edu

Fig. S1. Structures of $M(OH)_2$ and MOOH (M=Fe, Co, Ni). (**a-f**). Top views of $Fe(OH)_2$, FeOOH, $Co(OH)_2$, CoOOH, $Ni(OH)_2$ and NiOOH, respectively. (**g-m**) Electronic d orbital occupancies of metal ions in (**a-f**).

Fig. S2. Single-layer 25% Fe doped NiFe hydroxide, $Ni_{3/4}Fe_{1/4}(OH)_2$, model used for the calculations: (**a**) viewed from the side; (**b**) viewed from above the surface. Grey, red, pinky white and brown balls represent Ni, O, H and Fe atoms, respectively.

Fig. S3. (a-d) The investigated hydrogen desorption sites for $Ni_{3/4}Fe_{1/4}(OH)_2$ in the first stage of the dehydrogenation process (n=1-4). The different colors indicate different nH^x (n=1-4; x=1-5) dehydrogenation sites, as shown by the small balls on the right. Here, n represents the number of desorbed H, and x labels different desorption sites for the same n. The grey, pinky white, brown and red balls represent the Ni, H, Fe and O atoms, respectively.

Fig. S5. (**a-d**) The investigated hydrogen desorption sites of $Ni_{3/4}Fe_{1/4}(OH)_2$ during the dehydrogenation process (n=5-8). The different colors indicate different dehydrogenation sites.

Fig. S4. Desorption energies E_H of different sites in Ni_{3/4}Fe_{1/4}(OH)₂ during the dehydrogenation (n=1-4). Black symbols represent the best site. The colors indicate the different dehydrogenation sites shown in **Fig. S3**.

Fig. S6. Desorption energies E_H of different sites in Ni_{3/4}Fe_{1/4}(OH)₂ during the second stage of dehydrogenation (n=5-8). Black symbols represent the most favorable site. The different colors correspond to the different dehydrogenation sites shown in **Fig. S5**.

Fig. S7. (a-d) The investigated hydrogen desorption sites of $Ni_{3/4}Fe_{1/4}(OH)_2$ during the dehydrogenation process (n=9-12). The different colors indicate different dehydrogenation sites.

Fig. S8. Desorption energies E_H of different sites in Ni_{3/4}Fe_{1/4}(OH)₂ (n=9). Black symbols represent the most favorable site. The different colors indicate the different dehydrogenation sites as shown in **Fig. S7**. Fe⁴⁺and Ni⁴⁺ represent the electronic state of black label and olivine label respectively.

Fig. S9. Desorption energies E_H of different sites in Ni_{3/4}Fe_{1/4}(OH)₂ (n=10-12). Black symbols represent the most favorable site. The different colors indicate the different dehydrogenation sites as shown in **Fig. S7**. Fe⁴⁺and Ni⁴⁺ represent the electronic state of black label and purple label respectively.

Fig. S10. (a-d) The investigated hydrogen desorption sites of $Ni_{3/4}Fe_{1/4}(OH)_2$ during the dehydrogenation process (n=13-16). The different colors indicate different dehydrogenation sites.

corresponding OER overpotential (in eV).

Fig. S11. Desorption energies E_H of different sites in Ni_{3/4}Fe_{1/4}(OH)₂ (n=13-16). Black symbols represent the most favorable site. The different colors indicate the different dehydrogenation sites as shown in **Fig. S10**. Fe⁴⁺and Ni⁴⁺ represent the electronic state of black label and purple label respectively.

Fig. S12. Calculated OER free energy profiles for the V_{OH}^1 , V_{OH}^2 , V_{OH}^1 , V_{OH}^4 and V_{OH}^5 sites in Ni₁₂Fe₄O₃₂H₁₈ (n=14) that are at the top of the volcano plot in **Fig. 4a** of the main text. The reported value in each plot indicates the

Fig. S13. Locations of the investigated V_{OH} reactive sites in $Ni_{12}Fe_4O_{32}H_{18}$ (n=14), in addition to those shown in **Fig. 4b**: (a) site at the border of the Ni^{3+} region between Fe^{3+} and Fe^{4+} ; (b) sites in non-border region. Green, yellow, purple and grey polyhedral represent Ni^{3+} , Fe^{3+} , Fe^{4+} and Ni^{2+} , respectively. Green area: Ni^{3+} region between Fe^{3+} and Fe^{4+} .

Table S1. Average dehydrogenation energy E_H for the transformation of $M(OH)_2$ to MOOH (M=Fe, Co, Ni), obtained from PBE+U calculations.

Struct.	Total energy / eV	$\triangle E_H / eV$
Fe (OH) ₂	-458.18	
FeOOH	-387.02	1.09
Co(OH) ₂	-428.08	
СоООН	-347.17	1.71
Ni (OH) ₂	-395.77	
NiOOH	-310.73	1.96

Table S2. Computed (PBE+U) energies of $Ni_{3/4}Fe_{1/4}OOH$ configurations with different H distributions.

Hydrogen Distribution in Ni _{3/4} Fe _{1/4} OOH	Energy / eV	△E / eV
Same as in NiOOH-U ¹¹	-329.25	0.00
From step-by-step dehydrogenation of $Ni_{3/4}Fe_{1/4}(OH)_2$	-329.59	-0.34

Table S3. Calculated (PBE+U) total energy E, zero-point energy (ZPE) and room temperature. entropy correction (TS) for gas phase H_2 and H_2O . All values are in eV.

	E	ZPE	TS	G / eV
H ₂	-6.77	0.28	0.41	-6.90
H ₂ O	-14.23	0.58	0.67	-14.32

Table S4. Computed (PBE+U) energies of $Ni_{3/4}Fe_{1/4}OH$ configurations at n=12 with different H distributions.

Structure	Total energy / eV	△E / eV
Used in the text	-350.365	0.00
9H ¹ -type (Ni ³⁺)	-350.185	0.18

Defect Types	Reaction Step	Reactive	G-n*1.23/e	Overpotential	
	(Formula)	Site	/ V	/ V	
	* + 2H ₂ O		0.00		
	*OH + H ₂ O + 1/2H ₂	***•	-0.71		
	$*O + H_2O + H_2$		0.00	0.72	
	*00H + 3/2H ₂		0.10		
	* + O ₂ + 2H ₂		0.00		
	* + 2H ₂ O		0.00		
	$*OH + H_2O + 1/2H_2$		-0.92		
others	*O + H ₂ O + H ₂		-0.43	0.48	
	*00H + 3/2H ₂		-0.24		
	* + O ₂ + 2H ₂		0.00		
	* + 2H ₂ O		0.00		
	*OH + H ₂ O + 1/2H ₂	•	-0.72		
	*O + H ₂ O + H ₂	<u> </u>	-0.23	0.49	
	*00H + 3/2H ₂		0.16		
	* + O ₂ + 2H ₂		0.00		
	* + 2H ₂ O		0.00		
	*OH + H ₂ O + 1/2H ₂		-1.01		
border region	*O + H ₂ O + H ₂		-0.77		
	*00H + 3/2H ₂	*****	-0.25	0.51	
	* + O ₂ + 2H ₂		0.00		
	* + 2H ₂ O		0.00		
	*OH + H ₂ O + 1/2H ₂		-0.79		
	*O + H ₂ O + H ₂		-0.38	0.41	
	*00H + 3/2H ₂	····2	-0.05		
	* + O ₂ + 2H ₂		0.00		
	* + 2H ₂ O		0.00		
	*OH + H ₂ O + 1/2H ₂		-0.63		
others	*O + H ₂ O + H ₂	*****	-0.05	0.58	
	*00H + 3/2H ₂	·	0.20		
	* + O ₂ + 2H ₂		0.00		
	* + 2H ₂ O		0.00		
	*OH + H ₂ O + 1/2H ₂		-0.87		
	*O + H ₂ O + H ₂		-0.58		
	*00H + 3/2H ₂	*****	0.00	0.58	
	* + O ₂ + 2H ₂		0.00		

Table S5. Calculated (PBE+U) free energies of the four OER intermediates for the seven different V_{OH} reactive sites in Ni₁₂Fe₄O₃₂H₁₈ (n=14) that are shown in **Fig. S12**.