Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Single Nucleation of Cl-doped FAPbBr₃ with Inhibited Ion Migration

for Ambipolar Radiation Detection

Quanchao Zhang¹, Xin Liu¹*, Xin Zhang¹, Zijian Wang¹, Baoqiang Zhang², Yingying

Hao¹, Alain Dubois^{1,3}, Wanqi Jie¹, Yadong Xu^{1*}

¹State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, & School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China

²Ametek Co., Ltd., Shaanxi Xixian New Area Qinhan New City Tian Gong 1 road 8-1, Xi'an 712000, China

³Laboratory of Physical Chemistry – Matter and Radiation, Sorbonne Université, CNRS-, 75005 Paris France

Corresponding Author

* Tel: +86-29-88460445; Fax: 86-29-88495414

E-mail address: liuxin8@mail.nwpu.edu.cn (X. L.)

E-mail address: xyd220@nwpu.edu.cn (Y. X.).

ORCID

Xin Liu: 0000-0002-0409-1718

Yadong Xu: 0000-0002-1017-9337

Notes

The authors declare no competing financial interest.

Figure S1. Photos of as-grown FAPbBr₃ SCs and FAPbBr_{3-x}Cl_x SCs with Cl/(Cl+Br) ratios varying from 3.3% to 13.3%.

The released expansion stress can be calculated by the formular^[1]:

$$\sigma = 8\pi\mu r_{Cl}^3 \left(\frac{r_{Cl} - r_{B_r}}{r_{Br}}\right)^2$$

where $\mu = \frac{E}{2(1+\delta)}$ is the shear modulus, *E* is the Young's modulus, δ is the Poisson's

ratio, and r_{Cl} and r_{B_r} are the radii of Cl (1.67 Å) and Br (1.84 Å), respectively. Since $E(\text{GPa}) = -232.25 + 267.06\tau$ where τ is the tolerance factor^[2].

Cl	Br	Average radius of halide ion	Pb	FA ⁺	τ
0	3	0.184			1.0165
0.1	2.9	0.1834			1.0171
0.2	2.8	0.1829	0.12	0.253	1.0176
0.3	2.7	0.1823			1.0182
0.4	2.6	0.1817			1.0188

Table S3. Tolerance factor of the $FAPbBr_{3-x}Cl_x$ SCs.

Notice: the calculation of the tolerance factor can be expressed as:

$$\tau = \frac{r_A + r_X}{\sqrt{2}(r_B + r_X)}$$

where r_A , r_B , r_X is the radius of A site cation (FA⁺), B site cation (Pb²⁺), and halide ion X⁻,

respectively.

	C%	N%	Pb%	Br%	Cl%	Cl: X	Br: Cl
FAPbBr ₃	30.19	24.65	11.51	33.65	0	-	-
FAPbBr _{2.9} Cl _{0.1}	35.09	20.69	11.52	31.56	1.15	3.51	2.89: 0.11
FAPbBr _{2.8} Cl _{0.2}	26.20	28.16	11.71	31.91	2.01	5.93	2.82: 0.18
FAPbBr _{2.7} Cl _{0.3}	30.34	24.24	11.85	30.03	3.54	10.55	2.68: 0.32
FAPbBr _{2.6} Cl _{0.4}	34.40	23.22	10.97	27.26	4.15	13.20	2.60: 0.40

Table S2. EDS component analysis of $FAPbBr_{3-x}Cl_x$ SCs (The average of three points).

Figure S2. Ultraviolet transmittance spectrum of FAPbBr_{3-x}Cl_x SCs.

Figure S3. Charge recombination lifetime of FAPbBr_{3-x}Cl_x SCs by TRPL.

Figure S4. Dark *I-V* curve of (a) Au/FAPbBr_{2.8}Cl_{0.2}/Au, (b) Au/FAPbBr_{2.7}Cl_{0.3}/Au, (c) Au/FAPbBr_{2.6}Cl_{0.4}/Au, devices at room temperature. The inset is the *I-V* curve from -100 V to 100 V.

Figure S5. (a)(c)(e)(g) Dark *I-V* curve of Au/ FAPbBr_{3-x}Cl_x/Au devices at different temperatures. (b)(d)(f)(h) Temperature-dependent conductivity measurements of the corresponding FAPbBr_{3-x}Cl_x SCs.

Figure S6. ²⁴¹Am 5.5 MeV *a*-particle energy spectra of (a) Au/FAPbBr_{2.8}Cl_{0.2}/Au, (b) Au/FAPbBr_{2.7}Cl_{0.3}/Au, (c) Au/FAPbBr_{2.6}Cl_{0.4}/Au devices under various bias voltages. (d) The comparison of energy resolution of FAPbBr_{3-x}Cl_x SCs under different voltages.

Figure S7. (a) ²⁴¹Am 5.5 MeV *a*-particle energy spectra of Au/FAPbBr_{2.9}Cl_{0.1}/Au devices under various bias voltages. (b) Electron mobility-lifetime product by Hecht equation fitting.

Figure S8. Comparison of voltage resistance: ²⁴¹Am 5.5 MeV α -particle energy spectra of (a) Au/FAPbBr₃/Au, (b) Au/FAPbBr_{2.9}Cl_{0.1}/Au devices.

Figure S9. Typical dark *I-V* characteristics of AZO/FAPbBr_{2.9}Cl_{0.1}/Au devices.

Materials	Growth method	Band gap (eV)	μτ product (cm ² V ⁻¹)	Maximum Voltage on detector	Energy resolution (%)	Ref.
Ge	Czochralski	0.7	1	1000 V	0.14 (1 MeV/y-ray)	[3]
CdZnTe	Bridgman	1.57	e: 1.2×10 ⁻² h: 9×10 ⁻⁵	200 V	0.8 (662 keV/γ- ray)	[4, 5]
CdZnTe films	Close Spaced Sublimation	1.5	e: 2.562×10 ⁻⁴	50 V	16.45 (5.48 MeV/α particles)	[6]
CdTe	Bridgman	1.44	e: 3×10 ⁻³ h: 2.6×10 ⁻⁴	600V	12 (662 keV/γ- ray)	[7]
TlBr	traveling molten zone	2.68	e: 3×10 ⁻⁵ e: 1.5×10 ⁻⁶	200 V	3.3 (662 keV/γ- ray)	[8]
FAPbBr _{2.9} Cl _{0.}	Inverse temperature crystallization	2.23	e: 2.1×10 ⁻⁴ h: 1.5×10 ⁻⁴	300 V	h: 21.3 e: 19.2 (5.48 MeV/α particles)	This work

Table S3. Material Properties and Device Performance of Commercialized Radiation Detectors

Reference

- [1] H. Ye, Y. Liu, Y. Zhang, et al. Inner Strain Regulation in Perovskite Single Crystals through Fine-Tuned Halide Composition[J]. Crystal Growth & Design, 2021, 21(3): 1741-1750.
- [2] S. Sun, Y. Fang, G. Kieslich, et al. Mechanical properties of organic–inorganic halide perovskites, CH₃NH₃PbX₃(X = I, Br and Cl), by nanoindentation[J]. Journal of Materials Chemistry A, 2015, 3(36): 18450-18455.
- [3] I. Y. Lee, M. A. Deleplanque, K. Vetter. Developments in large gamma-ray detector arrays[J]. Reports on Progress in Physics, 2003, 66(7): 1095-1144.
- [4] F. Zhang, Z. He, C. E. Seifert. A Prototype Three-Dimensional Position Sensitive CdZnTe Detector Array[J]. IEEE Transactions on Nuclear Science, 2007, 54(4): 843-848.
- [5] F. Liu, R. Wu, J. Wei, et al. Recent Progress in Halide Perovskite Radiation Detectors for Gamma-Ray Spectroscopy[J]. ACS Energy Letters, 2022, 7(3): 1066-1085.
- [6] X. Wan, Y. Li, T. Tan, et al. Effects of annealing in Te2 atmosphere on photoelectric properties and carrier transport properties of CdZnTe films[J]. Materials Science in Semiconductor Processing, 2023, 153(107158).
- [7] T. T. a. S. Watanabe. Recent Progress in CdTe and CdZnTe Detectors[J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2001, 48(4).
- [8] K. Hitomi, Y. Kikuchi, T. Shoji, et al. Improvement of energy resolutions in TlBr detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 607(1): 112-115.