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Figure S1. Histograms of device parameters and lifetimes of solar cells used in this study: (a) PCE; (b) Jsc; 
(c) T80; (d) Voc; (e) fill factor. (f) Distribution of environmental conditions for samples in the training set for 
predictive models developed in this work. Points in (f) are plotted with random jitter to facilitate 
visualization of conditions for which multiple samples were run (i.e., perturbations in x- and y-directions 
for each point are randomly sampled from a normal distribution with mean 0 and standard deviation of 
0.25). 



Figure S2. X-ray diffraction pattern of a perovskite solar cell after degradation at 25 °C under 1 sun 
illumination in air at 60% relative humidity. Comparison against stick patterns shows that the only 
identifiable degradation product is PbI2, while the remaining peaks can be accounted for by materials 
present in pristine devices (i.e., MAPbI3, ITO, and Ag). Note, however, that this measurement does not 
preclude the presence of other potential degradation products (such as AgI) if they are amorphous or do not 
build up in domains of sufficient size to scatter X-rays beyond the noise level of the measurement. Stick 
patterns are calculated from Crystallography Open Database files (MAPbI3: COD pattern #4124388; 
ITO/In2O3: COD pattern #2310009; PbI2: COD pattern #9009114; AgI: COD #1011025) except for that of 
Ag, which is taken from Wyckoff.1 



Figure S3. (a) Dark field images of devices with three different types of top contacts tested in air under 1 
sun illumination at 25 °C and 50% RH: 100 nm Ag, the standard used in degradation experiments (top row); 
300 nm Ag (middle row); and 80 nm Au (bottom row). (b) Jsc evolution for the three devices in (a); vertical 
dashed lines indicate the corresponding columns in (a), while dashed lines at the beginning of each trace 
represent a linear fit to each curve over the first 1000 min. Decay rates, estimated as the slope of this fit, 
are given as numerical values in (b). Increasing the thickness of the Ag electrode reduces the speed of both 
Jsc decay and dark field intensity rise overall, although in the middle of decomposition the relative Jsc values 
are comparable, possibly due to a higher density of macroscopic fabrication defects in the device with the 
thicker Ag film. The device with the Au contact decays significantly faster than those with Ag contacts, but 
exhibits similar patterns in the dark field images. Pixel brightnesses in all dark field images are scaled to 
the same absolute intensity (in counts/second, since the image exposure time is auto-set by the acquisition 
software).



Figure S4. (a) Dark field image of a solar cell exposed to air at 25 °C and 50% RH under 1 sun illumination 
for 1500 min (same as Figure 2e). (b) Dark field intensity outside and inside the device up to the point at 
which the image in (a) was taken, calculated from the regions of interest (ROI) bounded by boxes of 
corresponding color in (a); solid lines represent the mean intensity within the ROI, while the shaded areas 
correspond to the mean ± the standard deviation of the intensity within the ROI. The ROIs are chosen 
specifically to avoid confounding effects of any manufacturing defects to best represent the behavior of an 
ideal device stack. (c) The same data as in (b) plus the dark field intensity corresponding to an ROI on the 
device edge indicated by the yellow bounding box in (a). Degradation occurs more quickly in the exposed 
region outside the device (dark field intensity increases by ~25% over the course of 1500 min) than in the 
device interior (intensity changes are hardly noticeable), but much more slowly than at the edge (increases 
by ~an order of magnitude over the same time range).



Figure S5. (a) Short-circuit current evolution under 1 sun equivalent illumination at 25 °C in 50% RH air 
of a CH3NH3PbI3 solar cell with the edges covered by Kapton tape to mitigate ingress of atmospheric 
species through the sides of the device. (b) Photograph of the device measured, indicated by the red dashed 
box. (c-g) Dark field images of the device at selected times indicated in panel (a). (c) Initially, images of 
the device are featureless (except for an out-of-focus region on the right side, due to deposits or scratches 
on the glass side of the device that could not be removed by polishing before measurement). (d,e) During 
the initial period of slow degradation, isolated defects in the interior “nucleate” and grow over time. There 
is some degradation at the edges, showing that the Kapton does not entirely prevent this decay mode, but 
decomposition here is much slower than in the analogous case shown in Figure 2 in which the device is 
completely unprotected. (f) As in the case of the unprotected device, however, there is a “knee” in Jsc that 
corresponds approximately with relatively homogeneous degradation throughout the region unprotected by 
the Kapton. (g) Near complete loss of Jsc and PCE, the decomposed region has spread almost completely 
throughout the device; only regions that are covered by Kapton and far from the contact edges remain intact. 
Extent of the device, as determined by overlap of the Ag and ITO electrodes, is indicated by the dashed 
lines in (c); regions covered by the Kapton protection are indicated approximately by the dashed lines in 
(g). Scale bars in (c-g) are 1 mm.



 
Figure S6. Scatterplots of device parameters at T80, normalized to their initial values, against the relative 
humidity of the atmosphere under which they were degraded: (a) Jsc; (b) Voc; (c) FF. Unlike temperature, 
the humidity level does not appear to have a major impact on these values.



Supplementary Note 1. Kinetic model for the decomposition rate of CH3NH3PbI3 perovskite as a function 
of ambient environmental conditions.

To predict the behavior of the perovskite absorber under environmental stresses, we use a model that we 
have recently developed that describes the chemical decomposition of CH3NH3PbI3 as an superposition of 
four distinct pathways:2 (i) water-accelerated photooxidation (WPO); (ii) dry photooxidation (DPO); (iii) 
light- and humidity-induced decomposition; and (iv) pure thermal decomposition, of which (i) and (ii) are 
dominant in air. The decomposition rate is thus expressed as the sum of terms corresponding to each of 

these pathways, calculated as a function of temperature  (specified in K), respective partial pressures  𝑇 𝑃𝑂2

and  of O2 and H2O (specified in kPa), and incident photon flux above the perovskite band gap  
𝑃𝐻2𝑂 𝐼𝑖𝑛

(specified in photons · m−2 · s−1):

𝑟(𝑇,𝑃𝑂2
,𝑃𝐻2𝑂,𝐼𝑖𝑛)

= 𝑘0,𝑊𝑃𝑂exp ( ‒
𝐸 𝑒𝑓𝑓

𝐴,𝑊𝑃𝑂

𝑘𝐵𝑇 ) 𝑃𝑂2
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𝑖𝑛
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(1 + 𝐾3𝑊𝐼0.7

𝑖𝑛 ))2
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Values of model parameters are given in Table S1 along with their physical interpretations;  is 𝑘𝐵

Boltzmann’s constant. Further details concerning the development and interpretation of this model may be 
found in Siegler et al.2

Table S1. Values and physical interpretations of parameters of the model used to calculate the CH3NH3PbI3 
decomposition rate from ambient environmental conditions.

Parameter Symbol Value Physical Interpretation
𝑘0,𝑊𝑃𝑂 2.9 × 10−25 mol · m−2 · s−1 · kPa−2 · (photons · m−2 · s−1)−0.7 Rate constant for WPO
𝐸 𝑒𝑓𝑓

𝐴,𝑊𝑃𝑂 −0.09 eV Activation energy for WPO

𝐾2𝑊 2.3 × 10−3 kPa−1 Equilibrium constant for O2 
adsorption in WPO

𝐾3𝑊 9.1 × 10−15 (photons · m−2 · s−1)−0.7 Equilibrium constant for superoxide 
formation in WPO

𝑘0,𝐷𝑃𝑂 5.5 × 10−15 mol · m−2 · s−1 · kPa−1 · (photons · m−2 · s−1)−0.7 Rate constant for DPO
𝐸 𝑒𝑓𝑓

𝐴,𝐷𝑃𝑂 0.62 eV Activation energy for DPO

𝐾2𝐷 2.7 × 10−3 kPa−1 Equilibrium constant for O2 
adsorption in DPO

𝐾3𝐷 1.1 × 10−14 (photons · m−2 · s−1)−0.7 Equilibrium constant for superoxide 
formation in DPO

𝑘ℎ𝑢𝑚 9.2 × 10−22 mol · m−2 · s−1 · kPa−1 · (photons · m−2 · s−1)−0.7 Rate constant for humidity-induced 
decomposition

𝐸 𝑒𝑓𝑓
𝐴,ℎ𝑢𝑚 0.20 eV Activation energy for humidity-

induced decomposition
𝑘𝑡ℎ𝑒𝑟𝑚 4.1 × 10−4 mol · m−2 · s−1 Rate constant for thermal 

decomposition

𝐸 𝑒𝑓𝑓
𝐴,𝑡ℎ𝑒𝑟𝑚 0.45 eV Activation energy for thermal 

decomposition



Figure S7. Feature coefficient breakdown for models trained by greedy feature selection by orthogonal 
matching pursuit. (a) Mean values with standard deviations represented as black bars across all test/train 
splits. (b) Median values across all test/train splits. (c) Coefficients of the model from the test/train split 
with median testing error. Color of the bars follows the convention introduced in Figure 4: red if the 
corresponding coefficient is negative, and blue if it is positive; positive and negative values are indicated 
by blue and red colors; deeper shades are of greater magnitude. (d) Coefficient values for each test/train 
split. (e) Test error corresponding to each test/train split. Test/train splits in (d) and (e) are sorted by test 
sample prediction error to aid in visualization of the structure of models with similar performance.



Figure S8. Feature coefficient breakdown for models trained by LASSO. (a) Mean values with standard 
deviations represented as black bars across all test/train splits. (b) Median values across all test/train splits. 
(c) Coefficients of the model from the test/train split with median testing error. Color of the bars follows 
the convention introduced in Figure 4: red if the corresponding coefficient is negative, and blue if it is 
positive. (d) Coefficient values for each test/train split; positive and negative values are indicated by blue 
and red colors; deeper shades are of greater magnitude. (e) Test error corresponding to each test/train split. 
Test/train splits in (d) and (e) are sorted by test sample prediction error to aid in visualization of the structure 
of models with similar performance.



Figure S9. Feature coefficient breakdown for models trained by ridge regression. (a) Mean values with 
standard deviations represented as black bars across all test/train splits. (b) Median values across all 
test/train splits. (c) Coefficients of the model from the test/train split with median testing error. Color of the 
bars follows the convention introduced in Figure 4: red if the corresponding coefficient is negative, and 
blue if it is positive. (d) Coefficient values for each test/train split; positive and negative values are indicated 
by blue and red colors; deeper shades are of greater magnitude. (e) Test error corresponding to each 
test/train split. Test/train splits in (d) and (e) are sorted by test sample prediction error to aid in visualization 
of the structure of models with similar performance.



Supplementary Note 2: Sparse modeling using a hybrid best-subset selection method (the 
 penalized linear model).𝑙0𝑙2 ‒

In the simple ordinary least squares (OLS) linear regression method, a sum-squared error loss 
function is minimized to obtain the optimal coefficients  that best fit the data using a linear model: 𝛽

, where  is the vector of features or independent variables. However, when the 𝑦𝑝𝑟𝑒𝑑 = 𝛽0 + 𝛽 ⋅ 𝑥 𝑥
data are scarce in comparison to the number of features available, the simple linear regression 
tends to overfit noise in the data in addition to any real trends that might be present. To reduce 
overfitting, penalized linear models whose loss functions contain additional terms characterizing 
the magnitude and complexity of the coefficient vector  have been developed to produce sparse 𝛽
models, in which only a small subset of features from the original menu are selected to build the 
final linear model. The least absolute selection and shrinkage operator (LASSO)3 is the most 
popular penalized linear method that uses an  penalty (the sum of the absolute values of the 𝑙1

coefficients in ) to penalize the insignificant features in the loss function. Though it is well known 𝛽
to produce sparse solutions by “shrinking” the coefficients of the insignificant features to zeros 
and thus selecting a handful of features to enter the model,3 it is found to render inconsistent 
solutions (containing many irrelevant features undesirably selected as significant) in cases with 
very few runs and the presence of collinearity in the feature data.4 Another popular penalized 
method is ridge regression5 which is based on the -penalty (the sum of the squares of the feature 𝑙2

coefficients). Compared to LASSO, ridge regression is less aggressive in shrinkage of coefficients 
and often leads to models using many features. This potentially leads to overfitting especially when 
the data is scarce. Recently, the best-subset selection (BSS) method (sometimes known as the -𝑙0

penalized method)5–8 which involves evaluation of all possible subsets of features independently 
with simple linear regression, has been growing popular. Since a straightforward exploration of all 
possible subsets is a discrete-optimization problem with NP-hard time-complexity, recent 
developments in linear programming have offered many faster solutions, with the fastest being the 
one with a polynomial time-complexity.8 This method acts as a good alternative to the 
conventional LASSO method due to its ability to produce consistent solutions and select features 
fewer than the LASSO method, even when the datasets are small. Recently, a hybrid BSS method 
based on an  penalty7 has been developed by augmenting the feature selection ability of the  𝑙0𝑙2 𝑙0

penalty with that of the  penalty to simultaneously shrink the coefficients. This method is known 𝑙2

to not only produce sparse solutions like , but also to be robust in data with large noise like . 𝑙0 𝑙2

Table S2 compares the loss functions of the popular penalized models discussed here, where 
 is the feature data matrix (i.e., each vector  consists of  observations of the 𝑋 = {𝑋1, 𝑋2,…, 𝑋𝑝} 𝑋𝑗 𝑁

associated feature),  is the target data vector (consisting of  corresponding observations of the 𝑦 𝑁

dependent variable), and , , and  are model hyperparameters used to scale the penalty terms. 𝜆0 𝜆1 𝜆2

The pseudo-code below (Algorithm S1) outlines the modeling methodology used in this paper. We 
use the adaptive best subset selection algorithm developed by Zhu et al.8 for implementation of the 
hybrid BSS method.



Table S2. Penalized loss functions that are minimized to obtain the optimal 𝛽
∗

Method (penalty) Loss function over 𝛽 = {𝛽0,𝛽1, …, 𝛽𝑝}

OLS (unpenalized) 𝐿𝑂𝐿𝑆(𝛽|𝑋, 𝑦) =
𝑁

∑
𝑖

[𝑦𝑖 ‒ (𝛽0 + 𝛽1𝑋1𝑖 + … + 𝛽𝑝𝑋𝑝𝑖)]2

LASSO ( )𝑙1 𝐿𝑙1
(𝛽│𝑋, 𝑦, 𝜆1) = 𝐿𝑂𝐿𝑆(𝛽|𝑋, 𝑦) + 𝜆1 ∙ |𝛽1| + |𝛽2| + … + |𝛽𝑝|

Ridge ( )𝑙2 𝐿𝑙2
(𝛽│𝑋, 𝑦, 𝜆2) = 𝐿𝑂𝐿𝑆(𝛽|𝑋, 𝑦) + 𝜆2 ∙ (𝛽2

1 + 𝛽2
2 + … + 𝛽2

𝑝)
Best-subset 
selection ( )𝑙0

𝐿𝑙0
(𝛽│𝑋, 𝑦, 𝜆0) = 𝐿𝑂𝐿𝑆(𝛽│𝑋, 𝑦)   𝑠.𝑡.  # 𝑜𝑓 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝛽 ∖ 𝛽0 = 𝜆0

Hybrid best-subset 
selection ( )𝑙0𝑙2

𝐿𝑙0𝑙2
(𝛽│𝑋, 𝑦, 𝜆0,𝜆2) = 𝐿𝑙2

(𝛽│𝑋, 𝑦, 𝜆2)   𝑠.𝑡.  # 𝑜𝑓 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝛽 ∖ 𝛽0 = 𝜆0

Algorithm S1. Pseudocode for sparse modeling

Start: Feature menu  with  variables and data with  runs.𝐹 𝑝 𝑁

Loop-1: Leave-one-out testing scheme
for  = :𝑖 {1, 2, …, 𝑁}

Test set indices:                                     run𝑆 𝑖
𝑡𝑒𝑠𝑡 = {𝑖} → 1

Train set indices:             runs𝑆 𝑖
𝑡𝑟𝑎𝑖𝑛 =  {1, 2, …, 𝑁} ∖ {𝑖} → 𝑁 ‒ 1

Loop-2: Grid-search of combinations of hyperparameters ( )𝜆0, 𝜆2

Range of :     where  is the maximum sparsity𝜆0 {1, 2, …, 𝜆0,𝑚𝑎𝑥} 𝜆0, 𝑚𝑎𝑥

Range of :   𝜆2 10 ‒ 3 ‒ 102

for  in 2D grid of  and :(𝜆𝑙
0, 𝜆𝑙

2) 𝜆0 𝜆2

Loop-3: Leave-one-out cross-validation for hyperparameter tuning
for  in :𝑘 𝑆𝑡𝑟𝑎𝑖𝑛

Tuning validation indices:                        run𝑆 𝑘
𝑣𝑎𝑙, 𝜆 =  {𝑘} → 1

Tuning train indices:                runs𝑆 𝑘
𝑡𝑟𝑎𝑖𝑛,𝜆 = 𝑆 𝑖

𝑡𝑟𝑎𝑖𝑛 ∖ {𝑘}   → 𝑁 ‒ 2

 Solve a linear model by minimizing an  penalized loss function:𝑙0𝑙2 ‒

𝐿𝑙0𝑙2
(𝛽│𝑋,𝑦,𝜆𝑙

0, 𝜆𝑙
2) =

𝑆 𝑘
𝑡𝑟𝑎𝑖𝑛,𝜆

∑
𝑗

[𝑦𝑗 ‒ (𝛽0 + 𝛽1𝑋1𝑗 + … + 𝛽𝑝𝑋𝑝𝑗)]2

+   𝜆𝑙
2(𝛽2

1 + 𝛽2
2 + … + 𝛽2

𝑝)



such that the number of non-zero 
elements in  is ,{𝛽1, 𝛽2, …, 𝛽𝑝} 𝜆𝑙

0

where  is the feature data matrix and  is the 𝑋 = {𝑋1, 𝑋2,…, 𝑋𝑝} 𝑦
target data array

 Record the validation error over  for each 𝑆 𝑘
𝑣𝑎𝑙,𝜆 (𝜆𝑙

0, 𝜆𝑙
2)

Obtain the mean validation error from loop-3 for each .(𝜆𝑙
0, 𝜆𝑙

2)

Choose the optimal  combination with the smallest mean validation error (𝜆𝑖
0, 𝜆𝑖

2)

from loop-2 and obtain the corresponding selected feature subset . The size 𝐹𝑖 ⊆ 𝐹

of the selected feature subset is 𝜆
𝑖
0

Finally, perform an ordinary least squares (OLS) linear regression over  to obtain 𝐹𝑖

the final coefficients for the model corresponding to 𝑆
𝑖

𝑡𝑟𝑎𝑖𝑛

Report the median test error from loop-1 as the test error and the features with large 
magnitudes of non-zero coefficients across the -iterations as the overall significant 𝑖
features.



Figure S10. Feature coefficient breakdown for models trained by hybrid best subset selection. (a) Mean 
values with standard deviations represented as black bars across all test/train splits. (b) Median values 
across all test/train splits. (c) Coefficients of the model from the test/train split with median testing error. 
Color of the bars follows the convention introduced in Figure 4: red if the corresponding coefficient is 
negative, and blue if it is positive. (d) Coefficient values for each test/train split; positive and negative 
values are indicated by blue and red colors; deeper shades are of greater magnitude. (e) Test error 
corresponding to each test/train split. Test/train splits in (d) and (e) are sorted by test sample prediction 
error to aid in visualization of the structure of models with similar performance.



Figure S11. (a) Device characteristics from a degradation experiment performed at 25 °C in air at 20% 
relative humidity on a solar cell using a 300 nm thick Ag contact. During periods indicated by yellow bands, 
the device was held under 1 sun-equivalent illumination from a 542 nm LED at maximum power point 
(when not being actively measured); otherwise, the device was held at short circuit in the dark. (b, c) 
Scatterplots of fill factor against series resistance measured from forward (b) and reverse (c) J-V scans. Fill 
factor improvements appear to have both reversible and irreversible components, and have a strong negative 
correlation with series resistance. 
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