Supporting Information

High-efficiency NiFeSe₄/NiSe₂ bifunctional electrocatalyst with outstanding oxygen evolution reaction and overall water splitting performance

Lan Mu, Shipeng Qiu, Gang Zhao^{*}, Baojie zhang, Wenbo Liao, Ning Zhao, Xijin Xu^{*} School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China

* Corresponding address: <u>sps_zhaog@ujn.edu.cn</u>; <u>sps_xuxj@ujn.edu.cn</u>

Figure S1 SEM image of catalyst (a-b) nickel foam; (c-d) NiFe-LDH.

Figure S2 Energy dispersion spectrum of NiFeSe₄/NiSe₂-8h.

Figure S3 XRD patterns of NiFe-LDH, NiFeSe₄/NiSe₂-6h, NiFeSe₄/NiSe₂-8h and NiFeSe₄/NiSe₂-10h.

Figuer S4 Crystal structure of NiSe₂ and NiFeSe₄.

Figure S5 Equivalent Circuit Model (ECM): Randall circuit model.

Figure S6 Shows the double-layer capacitors of NiFeSe₄/NiSe₂-6h, NiFeSe₄/NiSe₂-8h, NiFeSe₄/NiSe₂-10h, NiFe-LDH and NF, respectively.

Figure S7 (a) LSV curves of forward sweep; (b) normalization of current density using ECSA; (c) performance comparison of NiFeSe₄/NiSe₂-8h before and after stability test; (d) morphology of NiFeSe₄/NiSe₂-8h material after OER stability test.

Figure S8 Morphology of NiFeSe₄/NiSe₂-8h material after HER stability test

Figure S9 (a) LSV diagrams of NF, NiFe, NiFeSe₄/NiSe₂-8h, NiFeSe₄/NiSe₂-8h and NiFeSe₄/NiSe₂-8h; (b) performance comparison of NiFeSe₄/NiSe₂-8h before and after the total water splitting stability test.

Figure S10: (a) OER impedance diagram without fitting; (b) HER impedance diagram without fitting

element	line style	atomic percent	weight percentage	Mass Error (%) Fit
Fe	K	3.29	2.59	0.71
Ni	К	36.78	30.52	0.24
Se	К	59.93	66.89	0.37
total		100	100	

Table S1 Energy dispersive X-ray spectrum analysis of NiFeSe₄/NiSe₂-8h.

Table S2 Reaction impedances of OER and HER for NiFeSe₄/NiSe₂-6h, NiFeSe₄/NiSe₂-8h,NiFeSe₄/NiSe₂-10h, NiFe-LDH and NF.

	OER			HER				
Catalytic materials	R _s :	Ohmic	R _{ct} :	Charge	R _s :	Ohmic	R _{ct} :	Charge
	resistance		transfer		resistance		transfer	
			resistance				resistance	
NiFeSe ₄ /NiSe ₂ -6h	1.859		5.1		1.212		6.137	
NiFeSe ₄ /NiSe ₂ -8h	1.714		3.279		1.542		3.281	
NiFeSe ₄ /NiSe ₂ -10h	1.789		8.652		1.868		8.841	
NiFe-LDH		1.45	25.25		1.449		24.18	
NF	1.286		979.9		2.148		35.49	

 Table S3 overall water splitting performance comparison.

Catalyst	Current density (mA cm ⁻²)	Potential(V)	Reference
NiFeSe ₄ /NiSe ₂ -8h	10	1.569	This work
Ni1Fe10-LDH@Ni3S2/NF	10	1.650	1
(Ni,Co) _{0.85} Se NSAS	10	1.650	2
Fe ₃ O ₄ /NiFe LDH/Fe ₃ O ₄	10	1.648	3
NiSe ₂	10	1.640	4
NiCo ₂ S ₄ @NiFe-LDH/NF	10	1.600	5
NiWO ₄ @NiSe ₂ /NF	10	1.600	6
CoFe/NiFe-LDH	10	1.590	7
Cr-NiSe ₂ -N/NF	10	1.590	8
Co ₉ S ₈ @NiFe-LDH	10	1.585	9

References

- 1. L. Ren, C. Wang, W. Li, R. Dong, H. Sun, N. Liu and B. Geng, *Electrochimica Acta*, 2019, **318**, 42-50.
- K. Xiao, L. Zhou, M. Shao and M. Wei, *Journal of Materials Chemistry A*, 2018, 6, 7585-7591.
- 3. X. Zhang, Y. Qiu, Q. Li, F. Liu, L. Cui, C. Li and J. Liu, *Journal of Alloys and Compounds*, 2023, **932**, 167612.
- 4. J. Zhang, Y. Wang, C. Zhang, H. Gao, L. Lv, L. Han and Z. Zhang, ACS Sustainable Chemistry & Engineering, 2018, 6, 2231-2239.
- J. Liu, J. Wang, B. Zhang, Y. Ruan, L. Lv, X. Ji, K. Xu, L. Miao and J. Jiang, ACS Applied Materials & Interfaces, 2017, 9, 15364-15372.
- 6. J. Li, X. Du and X. Zhang, Journal of Alloys and Compounds, 2023, 951, 169941.
- 7. R. Yang, Y. Zhou, Y. Xing, D. Li, D. Jiang, M. Chen, W. Shi and S. Yuan, *Applied Catalysis B: Environmental*, 2019, **253**, 131-139.
- 8. X. Zheng, S. Sun, Y. Liu, D. Li, D. Tian, J. Zhu and D. Jiang, *Applied Surface Science*, 2023, **609**, 155406.
- 9. Y. Lu, C. Liu, Y. Xing, Q. Xu, A. M. S. Hossain, D. Jiang, D. Li and J. Zhu, Journal of Colloid and Interface Science, 2021, 604, 680-690.