Electronic Supplementary Information

Insight into the plasmonic "hot spots" and efficient hot electron

injection induced by Ag nanoparticles in a covalent organic

framework for photocatalytic H₂ evolution

Lihua Zhang ^{a,b}, Xu Lu ^a, Jiaqi Sun ^{a,b}, Cunxia Wang ^{a,b}, Pengyu Dong ^{a,*}

^a Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu

Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China.

^b School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China

* Corresponding authors.

E-mail address: dongpy11@gmail.com (P. Dong).

1. Supplementary Figures

Fig. S1. SEM images of (a) TpPa-1-COF, (b) 3% Ag/TpPa-1, and (c, d) 5% Ag/TpPa-1.

Fig. S2. The standard curve of H_2 production.

We quantify H_2 by the "external standard method" with the help of a standard curve. The standard curve is the trend line of the peak area with the volume/amount of the substance to be measured. After injecting 0.1 ml of high-purity H_2 into the photolytic water reaction system, the peak area S_{A1} can be obtained on the gas chromatography, and then injecting a known volume of 0.1 mL of high-purity H_2 into the photolytic water reaction system (cumulative injection), the peak areas S_{A2} , S_{A3} , S_{A4} , and S_{A5} can be obtained respectively. After linear fitting, the standard curve can be obtained. The standard calibration curve of H_2 detection is shown in Fig. S3. According to the fitted standard curve, the relationship between the peak area and the volume of H_2 evolved can be expressed as Equation S1.

$$y = 116833x + 1707 \tag{S1}$$

where y is the peak area corresponding to H_2 in the chromatography and x is the volume of H_2 (mL).

Fig. S3. The chromatogram of H₂ evolved over TpPa-1-COF.

Fig. S4. The chromatogram of H₂ evolved over 3% Ag/TpPa-1.

The volume of H_2 produced by the photolytic water reaction can be calculated by substituting the peak area measured by the photolytic water experiment according to the standard curve. An example of the H_2 evolved chromatogram is given in Fig. S5, which illustrates the process of the peak area over 3% Ag/TpPa-1 photocatalyst under visible light irradiation. The amount of H_2 evolved was determined at an interval of 1 h using an online gas chromatograph instrument with a thermal conductivity detector. The measured peak area was converted into the H_2 evolution rate according to the standard curve (Equation S1).

The number of generated moles (μ mol) of H₂ generated can be expressed as Equation S2.

$$n = \frac{V}{22.4} \tag{S2}$$

where *n* is the number of moles (μ mol) of H₂ produced, *V* is the hydrogen volume evolved (mL), and 22.4 is the molar volume of the gas (mL μ mol⁻¹).

Moreover, the number of moles of hydrogen produced per mass of photocatalyst

 $(\mu mol g^{-1})$ can be expressed as Equation S3:

$$C(\mathrm{H}_2) = \frac{n}{m}$$
(S3)

where $C(H_2)$ is the number of moles of hydrogen produced per mass of photocatalyst (µmol g⁻¹) and *m* is the amount of photocatalyst (g) added in the photocatalytic reactor.

Furthermore, the mean value of the amount of H_2 produced per unit mass of photocatalyst and per unit time (µmol g⁻¹ h⁻¹) can be evaluated according to Equation S4–S5.

$$P(H_2) = \frac{C(H_2)}{t}$$
(S4)
$$P(H_2) = \frac{\sum_{i=1}^{n=6} P_i(H_2)}{n}$$
(S5)

where *P* is the amount of H₂ produced per gram of photocatalyst per hour (μ mol g⁻¹ h⁻¹) and \overline{P} is the mean value of *P* (μ mol g⁻¹ h⁻¹).

Fig. S5. A comparison of (a) XRD pattern, (b) FTIR spectrum, (c) XPS spectrum, and

(d) TEM image of 3% Ag/TpPa-1 before and after photocatalysis.

Fig. S6. The constructed geometry model consisted of one unit cell of the TpPa-1-COF (001) plane and an Ag13 cluster from (a) side view and (b) top view.

Fig. S7. H₂ evolution process over (a) TpPa-1-COF and (b) Ag/TpPa-1.

Fig. S8 Atomic structures and the corresponding charge densities of these structures with one H atom adsorbed on (a) N site in TpPa-1, (b) O site in TpPa-1, (c) O site in Ag/TpPa-1, (d) Ag site in Ag/TpPa-1, and (e) N site in Ag/TpPa-1.

2. Supplementary Tables

Sample	Shell	^{a}N	${}^{b}R(\text{\AA})$	$^{c}\sigma^{2}(\text{\AA}^{2})$	$^{d} \Delta E_0 (\mathrm{eV})$	<i>R</i> , %
Ag foil	Ag–Ag	12	2.88±0.01	0.0100	1.97±0.37	0.0074
Ag/TpPa-1	Ag–O	2	2.36±0.01	0.0020		
	Ag–O	2	2.86±0.01	0.0017	-8.06±1.52	0.0120
	Ag–Ag	4	3.25±0.01	0.0088		

Table S1. Structural parameters obtained from the Ag L₃-edge EXAFS fitting.

^{*a*}N: numbers for coordination, ^{*b*}R: bond distance, ^{*c*} σ^2 : Debye–Waller factors, ^{*d*} ΔE_0 : the inner potential correction, *R* factor (%): degree of the fitting. Based on the experimental EXAFS fitting of the reference Ag foil, S_0^2 was determined to be 1.0 by fixing *N* as the known crystallographic value. The estimated error boundaries, or accuracy, were *N*, ±5%, and *R*, ±1%.

Athena (version 0.9.26) software was used to perform background, pre-edge line, and post-edge line calibrations on the collected XAFS data. After that, a Fouriertransformed fitting was done. For each fitting, the *k* range of 3–12 Å⁻¹ and the *R* range of 1.4–3.0 Å were used, along with the k^3 weighting. Without any fixed, limited, or correlated variables, the four parameters (*N*, *R*, σ^2 , and ΔE_0) – coordination number, bond length, Debye–Waller factor, and E_0 shift were fitted.

The $\chi(k)$ obtained by Athena was loaded into the Hama Fortran code for Wavelet Transform analysis. The following parameters were specified: *k* range = 0–12 Å⁻¹, *k* weight = 3, *R* range = 1–4 Å, and a mother Morlet function with $\kappa = 10$ and $\sigma = 1$.

Table S2. An overview of the H_2 evolution activity in some COFs-based and Ag-

Photocatalyst	Co- catalys t	Sacrificial agent	Solvent	Illuminati on	Activity (μmol g ⁻ ¹ h ⁻¹)	AQE (%)	Ref.
3% Ag/TpPa-1	_	Ascorbic acid	H ₂ O	\geq 420 nm	801	1.2 (450nm	This
)	work
3% Pt ₁ @TpPa-1- COF	_	Sodium ascorbate	PBS	\geq 420 nm	719	0.38 (420 nm)	1
MS-c@TpPa-1 (0.3: 1)	_	Sodium ascorbate	PBS	≥420 nm	528	0.54 (420 nm)	2
α-Fe ₂ O ₃ /TpPa-2- COF (3:7)	_	Sodium ascorbate	PBS	\geq 420 nm	3770	0.137 (450 nm)	3
CTF-HUST-2	3 wt% Pt	TEOA	H ₂ O	\geq 420 nm	2647	_	4
N ₀ -COF	Pt	TEOA	PBS	\geq 420 nm	23	_	5
N ₁ -COF	Pt	TEOA	PBS	\geq 420 nm	90	0.075 (450 nm)	5
N ₂ -COF	Pt	TEOA	PBS	\geq 420 nm	438	0.18 (450 nm)	5
N ₃ -COF	Pt	TEOA	PBS	\geq 420 nm	1703	0.44 (450 nm)	5
TP-BDDA	Pt	TEOA	H_2O	\geq 395 nm	324	1.3 (420 nm)	6
TP-EDDA	Pt	TEOA	H_2O	\geq 395 nm	30	_	6
COF-42	Co-1 ^a	TEOA	ACN/H ₂ O	AM 1.5	233	_	7
Co ₁ -phosphide/PCN		None	H_2O	\geq 300 nm	410	3.6 (420 nm)	8
ZnPor-DETH-COF	8 wt% Pt	TEOA	PBS	\geq 400 nm	413	0.063 (450 nm)	9
g-C ₁₈ N ₃ -COF	3 wt% Pt	AA	H ₂ O	\geq 420 nm	292	1.06 (420 nm)	10
TpDTz	NiME cluster	TEOA	H ₂ O	AM 1.5	941	0.2 (400 nm)	11
TFA-COF	Pt	TEOA	H ₂ O	Full wavelengt h	80	_	12
COF-alkene	3 wt% Pt	TEOA	H ₂ O	\geq 420 nm	2330	6.7 (420 nm)	13
COF-imide	3 wt%	TEOA	H ₂ O	\geq 420 nm	34	_	13

related photocatalytic systems.

S-11

Photocatalyst	Co- catalys	Sacrificial agent	Solvent	Illuminati on	Activity (µmol g⁻	AQE (%)	Ref
	t				¹ h ⁻¹)		
	Pt						
COF-imine	3 wt%	TEOA	H_2O	\geq 420 nm	12	_	13
	Pt						
5% Ag-g-C ₃ N ₄	_	TEOA	H_2O	≥420 nm	586.9	_	14
Ag/SnO ₂	_	TEOA	H_2O	≥420 nm	700	7.8 (420 nm)	15
Ag/TNF 1%	_		H_2O	≥420 nm	146.7	1.3 (420 nm)	16
PI/Ag-1	_	Methanol	H_2O	≥420 nm	166	_	17
Ag@N/O-C	_	TEOA	H_2O	AM 1.5	44.9	_	18
AgNS-CdS	_	Na_2SO_3	H_2O	> 400 nm	341	_	19
rGO-AgBr/Ag	_	TEOA	H_2O	AM 1.5	72.71	2.38%	20
Ag/SnO ₂ /C ₃ N ₄	_	Methanol	H_2O	≥420 nm	270	_	21
Ag/CQDs/g-C ₃ N ₄	_	TEOA	H_2O	≥400 nm	626.93	_	22
Ag/PANI/3DOMM-	_	Methanol	H_2O	AM 1.5	420.90	_	23
TiO _{2-x}							
Ag/N-TiO _{2-x}	_	Methanol	H_2O	AM1.5	186.2	_	24
Ag/S-TiO _{2-x}	_	-	H_2O	AM1.5	209.2	_	25
$Ag/g-C_3N_4$	1.0	TEOA	H_2O	≥420 nm	625	_	26
	wt% Pt						
Ag/ND/g-C ₃ N ₄	_	TEOA	H_2O	≥420 nm	158	_	27
Ag ₂ S/KCN-5	0.37	CH ₃ OH	H_2O	≥420 nm	96	_	28
	wt% Pt						
$Ag/Ag_2Ta_4O_{11}/$	_	TEOA	H_2O	≥420 nm	100.44	_	29
g-C ₃ N ₄							

References

- P. Dong, Y. Wang, A. Zhang, T. Cheng, X. Xi and J. Zhang, ACS Catal., 2021, 11, 13266-13279.
- Y. Wang, P. Dong, K. Zhu, A. Zhang, J. Pan, Z. Chen, Z. Li, R. Guan, X. Xi and J. Zhang, *Chem. Eng. J.*, 2022, 446, 136883.
- Y.-P. Zhang, H.-L. Tang, H. Dong, M.-Y. Gao, C.-C. Li, X.-J. Sun, J.-Z. Wei, Y. Qu, Z.-J. Li and F.-M. Zhang, *J. Mater. Chem. A*, 2020, 8, 4334-4340.
- K. Wang, L.-M. Yang, X. Wang, L. Guo, G. Cheng, C. Zhang, S. Jin, B. Tan and A. Cooper, *Angew. Chem. Int. Ed.*, 2017, 56, 14149-14153.
- V. S. Vyas, F. Haase, L. Stegbauer, G. Savasci, F. Podjaski, C. Ochsenfeld and B. V. Lotsch, *Nat. Commun.*, 2015, 6, 8508.
- P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze, R. Schomacker, A. Thomas and J. Schmidt, J. Am. Chem. Soc., 2018, 140, 1423-1427.
- T. Banerjee, F. Haase, G. Savasci, K. Gottschling, C. Ochsenfeld and B. V. Lotsch, J. Am. Chem. Soc., 2017, 139, 16228-16234.
- W. Liu, L. Cao, W. Cheng, Y. Cao, X. Liu, W. Zhang, X. Mou, L. Jin, X. Zheng,
 W. Che, Q. Liu, T. Yao and S. Wei, *Angew. Chem. Int. Ed.*, 2017, 56, 9312-9317.
- R. Chen, Y. Wang, Y. Ma, A. Mal, X. Y. Gao, L. Gao, L. Qiao, X. B. Li, L. Z. Wu and C. Wang, *Nat. Commun.*, 2021, **12**, 1354-1363.
- S. Wei, F. Zhang, W. Zhang, P. Qiang, K. Yu, X. Fu, D. Wu, S. Bi and F. Zhang, J. Am. Chem. Soc., 2019, 141, 14272-14279.
- B. P. Biswal, H. A. Vignolo-Gonzalez, T. Banerjee, L. Grunenberg, G. Savasci,
 K. Gottschling, J. Nuss, C. Ochsenfeld and B. V. Lotsch, *J. Am. Chem. Soc.*, 2019,
 141, 11082-11092.
- 12. C. Liu, Y. Xiao, Q. Yang, Y. Wang, R. Lu, Y. Chen, C. Wang and H. Yan, *Appl. Surf. Sci.*, 2021, **537**, 148082.
- C. Mo, M. Yang, F. Sun, J. Jian, L. Zhong, Z. Fang, J. Feng and D. Yu, *Adv. Sci.*, 2020, 7, 1902988.

- T. Ren, Y. Dang, Y. Xiao, Q. Hu, D. Deng, J. Chen and P. He, *Inorg. Chem. Commun.*, 2021, **123**, 108367.
- M. Q. Wang, Y. Liu, M. Zheng and X. Zhou, *Colloids Surf. A Physicochem. Eng. Asp.*, 2022, **650**, 129577.
- W. L. Zhong, C. Wang, S. L. Peng, R. Y. Shu, Z. P. Tian, Y. P. Du and Y. Chen, *Int. J. Hydrog. Energy*, 2022, 47, 16507-16517.
- X. F. Zhao, X. B. Yi, X. Q. Wang, W. Chu, S. P. Guo, J. Zhang, B. X. Liu and X. C. Liu, *Appl. Surf. Sci.*, 2020, **502**, 144187.
- Y. Yang, G. L. Zhuang, L. M. Sun, X. B. Zhang, X. Q. Yan, W. W. Zhan, X. J. Wang and X. G. Han, *J. Mater. Chem. A*, 2020, 8, 17449-17453.
- 19. H. Jung, Y. Whang and S. W. Han, B. Korean Chem. Soc., 2021, 42, 806-809.
- 20. X. Wang, W. Li, S. A. He, Q. Ma, B. C. Yan, N. Meng and L. F. Hao, *Int. J. Energy Res.*, 2020, **44**, 833-844.
- J. F. Wang, P. Fazil, M. I. A. Shah, A. Zada, N. Anwar, G. G. Zain, W. Khan, F. Jan, T. F. Lei and M. Ateeq, *Int. J. Hydrog. Energy*, 2023, 48, 21674-21685.
- 22. J. Qin and H. Zeng, Appl. Catal. B, 2017, 209, 161-173.
- Z. Xu, C. Guo, X. Liu, L. Li, L. Wang, H. Xu, D. Zhang, C. Li, Q. Li and W. Wang, *Chin. J. Catal.*, 2022, 43, 1360-1370.
- 24. J. Jiang, Z. Xing, M. Li, Z. Li, J. Yin, J. Kuang, J. Zou, Q. Zhu and W. Zhou, J. Colloid Interface Sci., 2018, 521, 102-110.
- M. Li, Z. Xing, J. Jiang, Z. Li, J. Yin, J. Kuang, S. Tan, Q. Zhu and W. Zhou, J. *Taiwan Inst Chem Eng.*, 2018, 82, 198-204.
- J. Wang, J. Cong, H. Xu, J. Wang, H. Liu, M. Liang, J. Gao, Q. Ni and J. Yao, ACS Sustain., 2017, 5, 10633-10639.
- L.-X. Su, Q. Lou, C.-X. Shan, D.-L. Chen, J.-H. Zang and L.-J. Liu, *Appl. Surf. Sci.*, 2020, **525**, 146576.
- Q. Zhang, P. Chen, L. Chen, M. Wu, X. Dai, P. Xing, H. Lin, L. Zhao and Y. He, J. Colloid Interface Sci., 2020, 568, 117-129.
- 29. Y. Wu, M. Song, Z. Chai and X. Wang, J. Colloid Interface Sci., 2019, 550, 64-

72.