Electronic supplementary information

Co-sintering a cathode material and garnet electrolyte to develop a bulk-type solid-state Li metal battery with wide electrochemical windows

Naohiro Hayashi,*^{a,b} Ken Watanabe,*^c and Kengo Shimanoe ^c

^a Department of Molecular and Material Science, Interdisciplinary Graduate School of

Engineering Science, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan

^b Environment Neutral Systems Development Div., DENSO Corporation, Kariya Aichi 448-8661, Japan

^c Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan

* Corresponding author. E-mail: naohiro.hayashi.j4z@jp.denso.com (N. H.), watanabe.ken.331@m.kyushu-u.ac.jp (K. W.)

Fig. S1 Relationship between the x values considered for synthesis and those estimated by XRD.

Fig. S2 (a, b, g, h) SEM images and (c–f, i–l) EDS-derived elemental maps of the LZ-CaSb + $xLi_7SbO_6 + Li_3BO_3$ composite electrolyte sintered at 750 °C for x values of (a–f) 0.04 and (g–l) 0.14. The SEM and EDS images in (b–f) and (h–l) correspond to the pink square shown in (a) and (g).

Fig. S3 The L₂O–B₂O₃ phase diagram reported by Rousse *et al.*³⁷

Fig. S4 XRD patterns of the LLZ-CaSb + xLi_7SbO_6 + Li_3BO_3 composite electrolytes sintered at 750 °C.

Fig. S5 Nyquist plots acquired at 298 K for the LLZ-CaSb + xLi_7SbO_6 (x = 0-0.16) + Li_3BO_3 composite electrolytes sintered at 750 °C.

Fig. S6 Arrhenius plots of (a) total ionic conductivity, (b) bulk ionic conductivity, (c) and grainboundary ionic conductivity measured at 240–320 K.

Fig. S7 Schematics illustrating the manner in which the amount of the Li–Sb–O phase depends on ion transport.

Fig. S8 Cyclic voltammetry profiles of the Au|LLZ-CaSb + xLi_7SbO_6 (x = 0.04, 0.06, 0.12, and 0.14) + Li_3BO_3 |Li cell at a scan rate of 1 mV/s.

Fig. S9 Molten Li metal wetting behaviour of LLZ-CaSb + $0.08Li_7SbO_6 + Li_3BO_3$ electrolyte specimens (a) with and (b) without Au surface coating.

Fig. S11 Rate performance of the Li|LLZ-CaSb + $0.08Li_7SbO_6|LiCoO_2 + LLZ-CaSb + 0.08Li_7SbO_6 + Li_3BO_3$ ASSB at 25 °C.

Fig. S12 Temperature-dependent performance of the $Li|LLZ-CaSb + 0.08Li_7SbO_6 + Li_3BO_3$ ASSB at 0.1C.

Study	Sample	Test temperature (°C)	Current density (mA/cm ²)	Test duration	LLZ sintering temperature (°C)
Xu <i>et al</i> . (2017) ²⁵	$\begin{array}{c} Li Li_{6.5}La_{3}Zr_{1.5}Ta_{0.5}O_{12}+\\ Li_{3}PO_{4} Li\end{array}$	60	0.1	6 h	1140
Huang et					
<i>al</i> . (2018) ⁴²	$Li Li_{6.4}La_3Zr_{1.4}Ta_{0.6}O_{12} Li$	25	0.1–0.3	300 h	1250
Song <i>et al</i> . (2018) ⁴³	$Li Li_{7,2}La_{3}Zr_{1.8}Gd_{0.2}O_{12} Li$	25	0.05	90 h	1220
		25	0.1	90 h	
		25	0.2	90 h	
Alexander <i>et al.</i> (2018) ⁴⁴	$Li Al Li_{6.28}Al_{0.24}La_3Zr_2O_{12} Al Li$	25	0.03	7.2 h	1200
Indu <i>et al.</i> (2019) ⁴⁵	$Li Au Li_{6.5}La_{3}Zr_{1.75}Te_{0.25}O_{12} Au Li$	25	0.1	900 min	1100
Koshikawa <i>et al.</i> (2019) ⁴⁶	$Li Au Li_{6.25}Al_{0.25}La_3Zr_2O_{12} Au Li$	25	0.05	6 h	1200
Su <i>et al</i> . (2019) ⁴⁷	$Li Li_{6.4}Ga_{0.2}La_3Zr_2O_{12} Li$	27	0.4	600 h	1150
Dong <i>et al</i> . $(2020)^{48}$	$Li Li_7La_3Zr_{1.75}Ce_{0.25}O_{12} Li$	60	0.0125	100 h	1050
()		60	0.025	50 h	
		60	0.05	50 h	
Present study	Li Au LLZ- CaSb+0.08Li ₇ SbO ₆ +Li ₃ BO ₃ Au Li	25	0.05	150 h	750

plating/stripping tests conducted in the present and previous studies

Table S1 Manufacturing temperatures, test environments, and performance data of Li