Supporting Information

Hydrogen-bonded CdSe/PDI with double electric field synergism for enhanced overall water splitting performance

Jinbo Xue,*ab Chengkun Lei,ab Qiurong Li,ab Zhe Sun,ab Huimin Li,ab Shihao Ding,ab

Husheng Jia,^{ab} Qianqian Shen,^{*ab} Xuguang Liu^{ab} and Yongfa Zhu^{*c}

^aKey Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University

of Technology), Ministry of Education, Taiyuan 030024, China. E-mail address: <u>xuejinbo@tyut.edu.cn</u>, <u>shenqianqian@tyut.edu.cn</u>

^bCollege of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China

^cDepartment of Chemistry, Tsinghua University, Beijing 100084, China. E-mail address:

zhuyf@tsinghua.edu.cn

Fig. S1 XRD patterns of various CdSe (a) and PDI (b), SEM images of various CdSe (c-e) and PDI

(f)

Fig. S2 TEM images (a) of d-CdSe and lattice fringes of d-CdSe (b)

Fig. S3 TEM images of c-CdSe/PDI (a) and (b); TEM images of d-CdSe/PDI (c) and (d); and (-112)

(e) and (122) (f) crystal faces of PDI

Fig. S4 Mott–Schottky curves of various CdSe (a) and PDI (b); DFT-calculated work function of PDI (122) (c) and CdSe (110) (d)

Fig. S5 Gas yield of control experiment

material	band gap	co- catalyst	light source	solution	gas generation rate(µmol g ⁻¹ h ⁻¹)	ref.	
d-CdSe/PDI	1.6/2.8		300 W-Xe	10 mL	H ₂ :120.7	This	
			(> 380 nm)	H ₂ O	O ₂ :60.6	work	
Cu ₇ S ₄ / <i>r</i> -MnS	0.77/2.12	MnO _x	300 W-Xe	(mL II O	H ₂ :309	[S1]	
			(>420 nm)	$6 \text{ mL H}_2 \text{O}$	O ₂ :36		
Cu ₂ P/Bi ₂ WO ₃	1.6/2.8		150 W-Xe	Na ₂ HPO ₄ /	11 4 7	[S2]	
				NaH ₂ PO ₄ ,	H ₂ :4.7		
				80 mL	O ₂ :2.3		
P/Bi ₂ VO ₃	0.7/2.39		320 W-Xe	8I. II. O	H ₂ :16	[S3]	
			(> 420 nm)	$8 \text{ mL H}_2\text{O}$	O ₂ :102		
BP/RP	1.27/1.96	Co,Fe,	200 W-LED		IL .200	[S4]	
		Ni,Cu	(> 420 nm)	$6 \text{ mL H}_2 \text{O}$	H ₂ :300		
ZnTe/TiO ₂	2.14/3.05	Au	320 W-Xe	50 mL	H ₂ :3340	[S5]	
			(> 350 nm)	H_2O	O ₂ :1670		
C _{ring} /C ₃ N ₄	0/2.74	3 wt%Pt	300 W-Xe	Dury II O	H ₂ :150	[S6]	
			(>420 nm)	Pure H_2O	O ₂ :75		
g-C ₃ N ₄ /TiO ₂	2.7/3.2		300 W-Xe	100 mL	11.65	[S7]	
			(> 400 nm)	H ₂ O	H ₂ :00		

Table S1. Comparison of the photocatalytic water splitting activity for some representative photocatalysts

The red part is this work, the blue part is the heterojunction composed of inorganic and inorganic materials, and the yellow part is the heterojunction formed by hybridization of organic and inorganic materials.

Fig. S6 SEM images of samples after reaction

Fig. S7 I-t curves (a), EIS (b), and PL of single-compoment samples (c); open-circuit potential of

PDI and composite samples (d)

The built-in electric field strength of the overall catalyst can be obtained from Eq. S1:^{S8}

$$E = \left(\frac{-2V_s\rho}{\varepsilon\varepsilon_0}\right)^{1/2}$$
..... Eq. S1

where *E* is the internal electric field magnitude, V_s the surface voltage, ρ the surface charge density, \mathcal{E} the low-frequency dielectric constant, and \mathcal{E}_0 the permittivity of free space. The above equation reveals that the internal electric field magnitude is mainly determined by the surface voltage and charge density because \mathcal{E} and \mathcal{E}_0 are two constants.

The carrier lifetime in the TRPL can be calculated from Eq. S2:

$$\tau_{ave} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2} \dots \text{Eq. S2}$$

where A_1 and A_2 represent the amplitudes of the fast and slow components, τ_1 and τ_2 the time constants. The fitting parameters used for our curves are listed in Table S2.

Sample	τ_1/ns	τ_2/ns	A ₁ /%	A ₂ /%	τ_{ave}/ns
d-CdSe	0.29	4.32	88.85	11.15	2.92
PDI	0.28	3.21	90.93	9.07	1.84
d-CdSe/PDI	0.29	4.72	87.74	12.26	3.37

Table S2. Fitting parameters for transient PL spectra

Fig. S8 Morphology of Co₃O₄ and Ag nanoparticles loaded on PDI, respectively

We determined the hole accumulation and electron accumulation surfaces of PDI by the position of photodeposited Co_3O_4 and Ag nanoparticles loaded on PDI nanosheets. The surface where Co_3O_4 is located is the hole accumulation surface, and the surface where Ag nanoparticles are located is the electron accumulation surface. It can be observed from Fig. S8 that Co_3O_4 is loaded on the front side of PDI nanosheets and Ag nanoparticles are loaded on the side of PDI nanosheets. Therefore, the side of PDI nanosheet (122) is the electron accumulation surface and the front side (-112) is the hole accumulation surface.

Fig. S9 IMPS of d-CdSe/PDI (a), c-CdSe/PDI (b), and PDI (c) measured at 0.2, 0.4 and 0.6 V vs. NHE; τ_D (d) and $k_t/(k_t + k_r)$ (e) values extracted from the IMPS fitting data at different potentials; and schematic diagram of the IMPS mathematical model (f)

Intensity-modulated photocurrent spectra (IMPS) allows further quantitative analysis of the carrier dynamics in the sample. The intensity-modulated photocurrent response $j(\omega)$ is shown in Eq. S3: ^{S9}

$$j(\omega) = j_0 \times \frac{k_t + i\omega(\frac{C_H}{1 + C_H/C_{SC}})}{k_t + k_r + i\omega} \times \frac{1}{1 + i\omega\tau_D} \dots \text{Eq. S3}$$

Where j_0 is the hole amplitude of the hole flow to the surface, C_{SC} and C_H are the point capacitances of the space charge layer and the Helmholtz layer, k_t and k_r are the pseudo-first-order rate constants for charge transfer and complexation, τ_D is the average transport time of the photogenerated electrons, ω is the frequency of the modulated light and i is the current. It can be seen from Fig. S9f that in the low-frequency semicircle, the real part at $\omega = 0$ is close to $j_0 k_t / (k_t + \omega)$ k_r), and $\omega_{max} = k_t + k_r$ can satisfy its maximum value. The high-frequency intercept of the composite semicircle corresponds to the instantaneous photocurrent, and the value of the real part tends to j_0 . The value of td is related to the frequency of the lowest point of the imaginary part. Therefore, the values of j_0 , τ_D , k_t and k_r can be calculated from the high frequency intercept, the low frequency intercept, ω_{max} and ω_{min} . Typically, τ_D is considered to be a metric of charge bulk phase transport, and the larger its value, the higher the bulk phase complex.^{S10} The degree of bulk-phase complexation can be derived from Fig. S9d: d-CdSe/PDI < c-CdSe/PDI < PDI. d-CdeSe/PDI has the strongest charge-transfer capability, as can be seen from the relative magnitude of the electrontransfer efficiency, $k_t/(k_t + k_r)$, in Fig. S9e. It further indicates that an isotropic double electric field can synergistically promote charge transfer and transport.

Reference

- Y. Zhang, D. Wang, W. Liu, Y. Lou, Y. Zhang, Y. Dong, J. Xu, C. Pan and Y. Zhu, *Appl. Catal. B*, **2022**, 300, 120762.
- A. Rauf, M. Ma, S. Kim, M.S.A.S. Shah, C.H. Chung, J. H. Park and P. J. Yoo, *Nanoscale*, 2018, 10, 3026–3036.
- 3 M. Zhu, Z. Sun, M. Fujitsuka and T. Majima, Angew. Chem. Int. Ed., 2017, 130, 2182–2186.
- F. Liu, R. Shi, Z. Wang, Y. Weng, C. Che and Y. Chen, *Angew Chem Int Ed.*, 2019, 58, 11791–
 11795.
- 5 W. Zhang, Y. Hu, C. Yan, D. Hong, R. Chen, X. Xue, S. Yang, Y. Tian, Z. Tie and Z. Jin, *Nanoscale*, **2019**, 11, 9053–9060.
- W. Che, W. Cheng, T. Yao, F. Tang, W. Liu, H. Su, Y. Huang, Q. Liu, J. Liu, F. Hu, Z. Pan, Z.
 Sun and S. Wei, *J. Am. Chem. Soc.*, 2017, 139, 8, 3021–3026.
- J. Pan, M. You, C. Chi, Z. Dong, B. Wang, M. Zhu, W. Zhao, C. Song, Y. Zheng and C. Li, *Int. J. Hydrog. Energy*, 2018, 43, 6586–6593.
- 8 Y. Zhang, D. Wang, W. Liu, Y. Lou, Y. Zhang, Y. Dong and J. Xu, *Appl. Catal. B*, **2022**, 300, 120762.
- 9 E. A. Ponomarev and L. M. Peter, J. Electroanal. Chem., 1995, 396, 219–226.
- 10 P. Liu, L. F. Florian and B. Florent, J. Mater. Chem. A, 2019, 7, 1669–1677.