Supporting information

Hollow structural materials derived from MOFs/Polymer loaded Co-Ru alloy for Significantly Boosting Electrochemical Overall Water Splitting

Materials. 2-Methylimidazole (99%), cobalt nitrate hexahydrate ($Co(NO_3)_2 \cdot 6(H_2O)$), Zinc nitrate hexahydrate, methanol (HPLC), dopamine hydrochloride (DA) and Ruthenium chloride hydrate were purchased from Aladdin and used without further purification.

Synthesis of ZIF-67. Two solutions were prepared by dissolving 1.7 mmol (498 mg) of $Co(NO_3)_2 \cdot 6H_2O$ and 17 mmol (1400 mg) of 2-methylimidazole in 50 mL of methanol, respectively. Then, at room temperature, two solutions were mixed together and standing for 12 h. The light-purple products were centrifuged for 8 min (5000 rpm), washed 3 times and dissolved at 30 mL of methanol.

Synthesis of ZIF-8. The synthesis method was the same as ZIF-67. 3 mmol (892mg) of Zinc nitrate hexahydrate was dissolved in 30ml methanol. 12mmol (985mg) of 2-methylimidazole in 5 mL of methanol. Then, at room temperature, two solutions were mixed together and standing for 12 h. The products were centrifuged for 8 min (5000 rpm), washed 3 times and dissolved at 30 mL of methanol.

Synthesis of CoRu/PDA Hollow Nanostructures (CoRu/PDA HNSs). First, removing the solution containing 60 mg ZIF-67 from the above ZIF-67 solution dispersed in 55 mL of methanol; then, 10 mL of 10mg Ruthenium chloride hydrate methanol solution and 15mL of 20 mM DA methanol solution was added. After that, the mixture was stirred at 60 °C for different time (7h, 8h, 9h and 10h). The products were collected viacentrifugation for 8 min (8000 rpm), washed 3 times by methanol, and dried at 60 °C for 12 h.

Synthesis of ZnRu/PDA Hollow Nanostructures (ZnRu/PDA HNSs). The synthesis method was the same as CoRu/PDA HNSs. Simply replaced 60mg of ZIF-67 solution with 60mg ZIF-8 and the reaction time was 9h.

Synthesis of Co/PDA Hollow Nanostructures (Co/PDA HNSs). Compared to the synthesis method of CoRu/PDA HNSs, just Ruthenium chloride hydrate methanol solution was not added and the reaction time was also 9h.

Synthesis of CoRu@N-Doped Carbon Hollow Nanostructures (CoRu@NCHNSs) catalysts.

CoRu/PDA HNSs were used as precursorsto synthesize CoRu@NCHNSs catalysts. The powder of CoRu/PDA HNSs was placed in a tube furnace and heated to 750°C for 2 h in flowing Ar with a ramp rate of 5 °C·min⁻¹ to prepare CoRu@ NCHNSs.

Synthesis of Co@N-Doped Carbon Hollow Nanostructures (Co@NCHNSs) and ZnRu@N-Doped Carbon Hollow Nanostructures (ZnRu@NCHNSs) catalysts. The synthesis method was the same as CoRu@N-Doped Carbon Hollow Nanostructures (CoRu@NCHNSs) catalysts.

Characterization. Hitachi H-800 and JEM-2100F electron microscopes were used to collect transmission electron microscopy (TEM) images at 200 kV with a CCD camera. A JEOL FESEM 6700F electron microscope was used to take scanning electron microscopy (SEM) images at 3 kV. Nickel-filtered Cu Kα radiation was used to perform X-ray diffraction (XRD) analysis, and the data were collected from 5 to 80° (model Rigaku RU-200B). An ESCALAB 250 spectrometer was used to perform X-ray photoelectron spectroscopic (XPS) analysis. The metal content was obtained using inductively coupled plasma-optical emission spectrometry (ICP-OES) analyzer (ELAN 9000/DRC).

Electrochemical Measurements. A CHI660E electrochemical analyzer was used to characterize all of the performances of electrocatalytic activity. A three-electrode setup was used to evaluate electrochemical measurements with a Hg/HgO (1M KOH solution) electrode as the reference electrode and a graphite rod electrode as the counter electrode. The working electrode was a glassy carbon (GC) electrode with 3 mm in diameter. Five mg of catalyst powders was dispersed in 1 mL of solution containing 0.96 mL of methanol and 40 μ L of 5.0 wt % Nafion ethanol solution to prepare the catalyst suspension, followed by ultrasonication for 20 min. The above suspension (10 μ L) was dropped on the polished GC electrode (RHE): $E_{RHE} = E_{Hg/HgO} + 0.098 + 0.059 \times \text{ pH}$. OER and HER performance was evaluated by linear sweep voltammetry (LSV) in 1.0 M KOH at a scan rate of 10 mV·s⁻¹. Long-term chronoamperometry and cyclic voltammetry (CV) scanning were used to carry out the stability tests. Electrochemical impedance spectroscopy (EIS) measurements were performed at different potentials from 10⁵ to 0.1Hz. A two-electrode cell was used to perform the activity of overall water splitting in 1.0 M KOH solution.

Calculation details

1. ECSA calculations:

The electrochemical surface area (ECSA) and ECSA-normalized current density is calculated as follows¹:

$$ECSA = C_{dl}/C_s \tag{1}$$

ECSA-normalized current density = current density/ECSA (2)

where C_s was the specific capacitance and the value of C_s was 0.04 mF cm⁻² according to related reports.

2. TOF calculations:

The turnover frequency (TOF) can be calculated according to the following equation²:

$$\text{TOF} = \frac{j(\eta)A}{ZnF}$$

where $j(\eta)$ is the current density (A cm⁻²) of the LSV for different catalysts; A is the geometric testing area of electrode (cm²); Z means the number of electrons transferred (OER: Z = 4); n is the number of surface active sites (mol); F is the Faraday constant (96485 C mol⁻¹). CV measurements were conducted from 0.1-0.2 V vs. Hg/HgO at 10 mV s⁻¹ in 1 M KOH solution. The absolute components of the voltammetric charges (cathodic and anodic) tested during one CV cycle were calculated (Q₊ + Q₋ = integral area (I in A and V in V)/scan rate (in V s⁻¹)). Assuming a one electron redox process and the maximum potential window (1.23 V), this absolute charge was multiplied by 12.3 times and divided by two (|Qmax| = 12.3 × (Q₊ + Q₋)/2). The maximum number of surface active sites of the catalysts could be calculated as: n_{max} = |Q_{max}|/F, then the minimum TOF values were obtained.

Figure S1. SEM images of the (a) ZIF-67, (b) CoRu/PDA HNSs-9h and (c) CoRu@NCHNSs-9h.

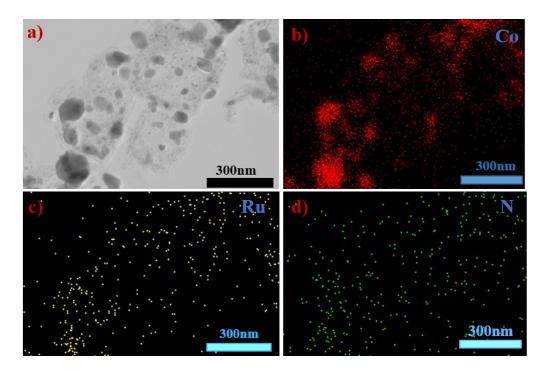
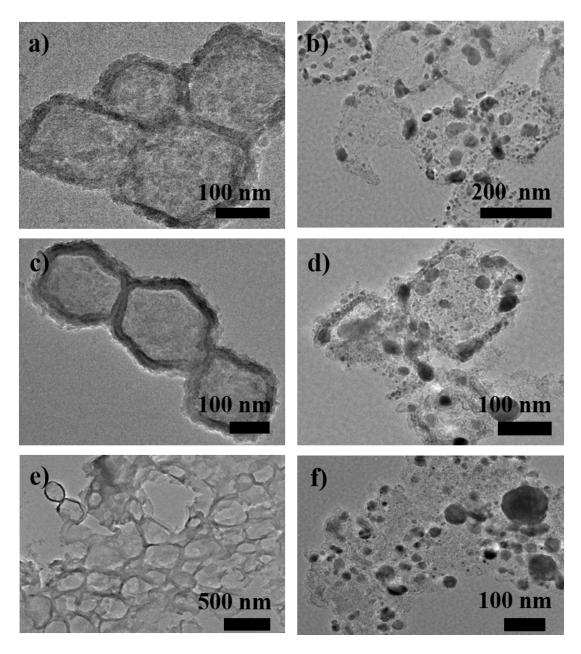



Figure S2. (a) TEM images of CoRu@NCHNSs-9h, (b-d) corresponding mapping images of CoRu@NCHNSs-9h.

Figure S3. TEM images of (a) the CoRu/PDA HNSs-7h, (b) CoRu@NCHNSs-7h, (c) CoRu/PDA HNSs-8h, (d) CoRu@NCHNSs-8h, (e) CoRu/PDA HNSs-10h, (f) CoRu@NCHNSs-10h.

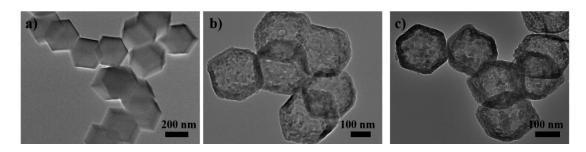


Figure S4. TEM images of the (a) ZIF-8, (b) ZnRu/PDA HNSs-9h and (c) ZnRu@NCHNSs-9h.

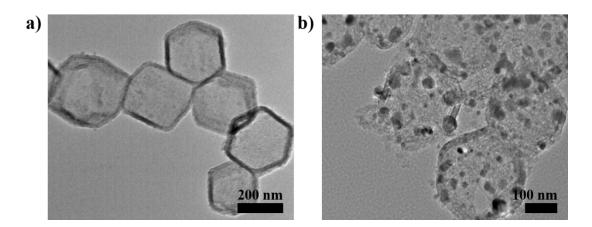


Figure S5. TEM images of the (a) Co/PDA HNSs-9h and (b) Co@NCHNSs-9h.

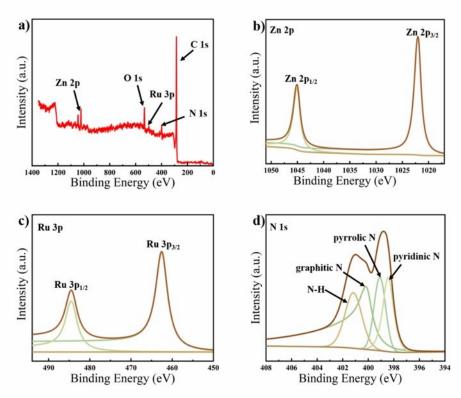


Figure S6. (a) Survey scan of the ZnRu@NCHNSs-9h, (b-d) High-resolution XPS spectra of Zn 2p, Ru 3p, N 1s.

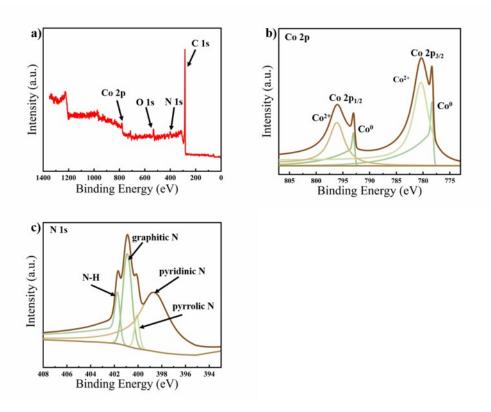
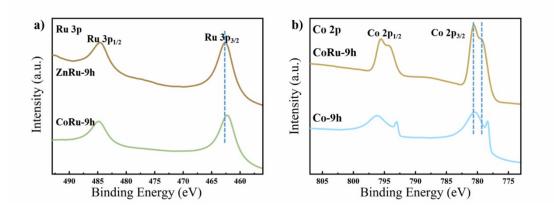



Figure S7. (a) Survey scan of the Co@NCHNSs-9h, (b-c) High-resolution XPS spectra of Co 2p, N 1s.

Figure S8. (a) Ru 3p high-resolution XPS spectra for CoRu@NCHNSs-9h and ZnRu@NCHNSs-9h, (b) Co 2p high-resolution XPS spectra for CoRu@NCHNSs-9h and Co@NCHNSs-9h.

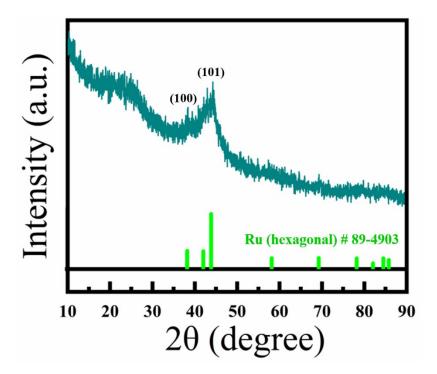


Figure S9. XRD pattern of the ZnRu@NCHNSs-9h.

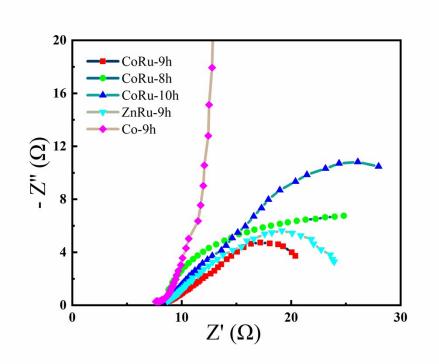
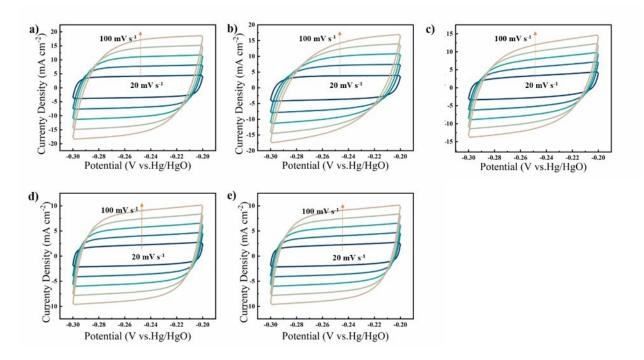
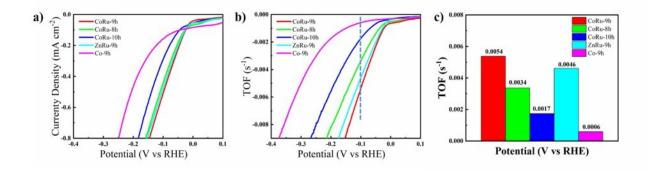




Figure S10. EIS Nyquist plots of CoRu@NCHNSs-8h, CoRu@NCHNSs-9h, CoRu@NCHNSs-10h, ZnRu@NCHNSs-9h and Co@NCHNSs-9h catalysts during HER process in 1.0 M KOH solution.

Figure S11. The CV curves at different scan rates (20-100 mV·s⁻¹ with the interval of 10 mV·s⁻¹) of (a) CoRu@NCHNSs-9h, (b) ZnRu@NCHNSs-9h, (c) CoRu@NCHNSs-8h, (d) CoRu@NCHNSs-10h, (e) Co@NCHNSs-9h catalysts during HER process in 1.0 M KOH solution.

Figure S12. (a) HER specific activity curves normalized by ECSA, (b) HER TOF curves, (c) TOF value at a potential of -0.1V.

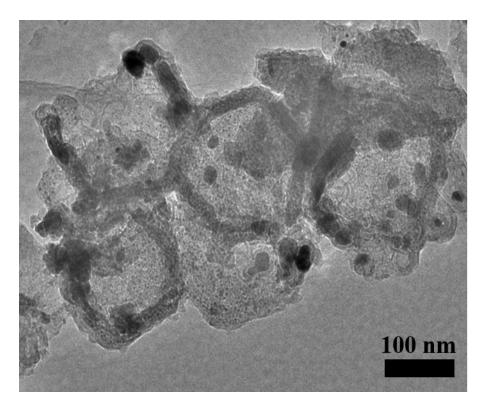


Figure S13. TEM image of the CoRu@NCHNSs-9h after HER.

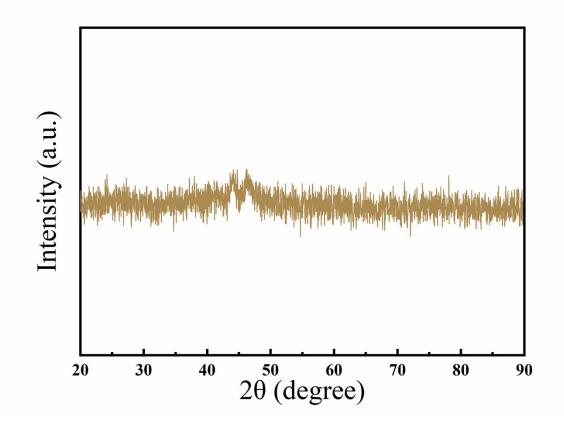


Figure S14. XRD pattern of CoRu@NCHNSs-9h after HER.

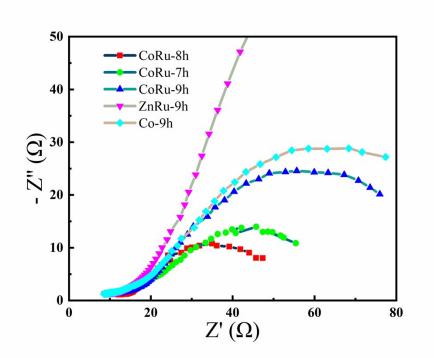
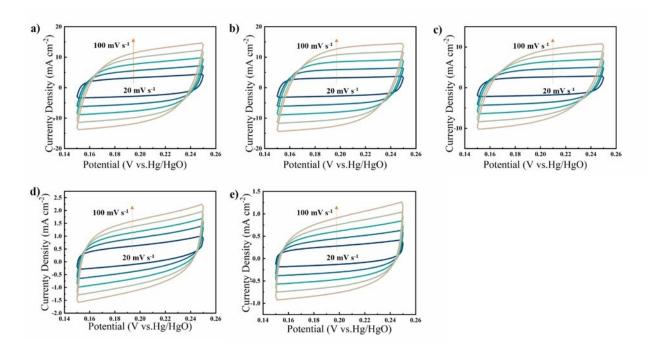
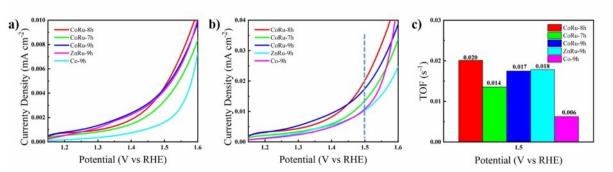




Figure S15. EIS Nyquist plots of CoRu@NCHNSs-7h, CoRu@NCHNSs-8h, CoRu@NCHNSs-9h, ZnRu@NCHNSs-9h and Co@NCHNSs-9h catalysts during OER process in 1.0 M KOH solution.

Figure S16. The CV curves at different scan rates (20-100 mV s⁻¹ with the interval of 10 mV s⁻¹) of (a) CoRu@NCHNSs-8h, (b) CoRu@NCHNSs-7h, (c) CoRu@NCHNSs-9h, (d) Co@NCHNSs-9h, (e) ZnCo@NCHNSs-9h catalysts during OER process in 1.0 M KOH solution.

Figure S17. (a) OER specific activity curves normalized by ECSA, (b) OER TOF curves, (c) TOF value at a potential of 1.5 V.

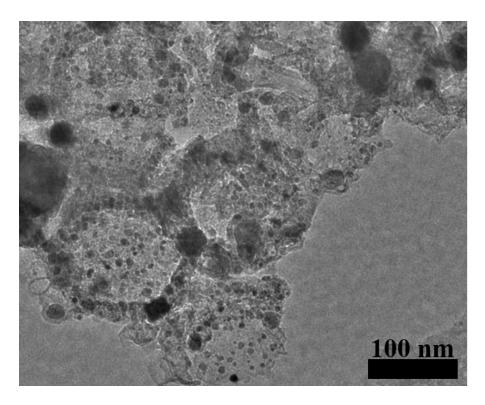


Figure S18. TEM image of the CoRu@NCHNSs-8h after OER.

Figure S19. XRD pattern of CoRu@NCHNSs-8h after OER.

Catalysts	Overpotential (mV)	Reference	
	at 10 mA cm ⁻²		
S–Fe–Ni	89	J. Mater. Chem. A, 2023, 11, 4661– 4671	
Pt _{sa} -NiO	55	ACS Nano 2023, 17, 18539–18547	
CoRu _{0.5} /CQDs	18	Angew. Chem. Int. Ed. 2021, 60, 3290 – 3298	
N-FeCoP	132	Small 2023, 19, 2302475	
Co ₇ Fe ₃ /Co-600	68	Adv. Sci. 2023, 10, 2301961	
CC/MOF-	110	Chem. Eng. J., 2022 429 132379	
$CoSe_2@MoSe_2$			
NiCu/Co	68	ACS Catal. 2023, 13, 10615–10626	
Co/N-NiMo ₃ S ₄	78	Appl. Catal., B, 2023 338 123007	
Co-OSP	132	Chem. Eng. J., 2023 465 142853	
CoP/CSNSs	251	Chem. Eng. J., 2023 460 141709	
Ni-Co-Fe-P NBs	32	Appl. Catal., B, 2022 310 121353	
CeO ₂ -NiCoP _x /NCF	39	Appl. Catal., B, 2022 316 121678	
Co-Rh ₂	2	Adv. Funct. Mater. 2023, 33, 2209134	
Fe ₂ P/Co@NPC	235	J. Mater. Chem. A, 2022, 10, 16037–16045	
T-Pt-Co ₄ N	31	ACS Nano 2022, 16, 18038-18047	
NiCoFeB	174	Adv. Energy Mater. 2023, 13, 2203002	
(CoSAs-MoS ₂ /TiN NRs	132	Adv. Funct. Mater. 2021, 31, 2100233	
Co-Fe-P	53	Chem. Eng. J., 2021 405 127002	
(Fe-Co-	112	Small 2021, 17, 2101312	
O/Co@NC-mNS/N			
V-CoP	46	Adv. Energy Mater. 2021, 11, 2101758	
CoRu@NCHNSs-9h	13	This work	

Table S1. HER performance of the CoRu@NCHNSs in this work, in comparison with other state-of-the-art non-noble metal based catalysts in 1.0 M KOH from recent publications.

Catalysts	Overpotential (mV)	Reference	
	at 10 mA cm ⁻²		
Co-MOF-74@CoPc	291	J. Mater. Chem. A, 2023, 11, 8141–8149	
Co-ZIF/CDs/CC	226	Small, 2023, 19, 2206723	
CoMM SACs	351	J. Am. Chem. Soc. 2023, 145, 8052–8063	
Ir/Ni-Co ₃ O ₄	177	Adv. Energy Mater., 2023, 2302537	
FeSe/Co ₂ P/NF	235	J. Mater. Chem. A, 2023, 11, 8330–8341	
CoFe LDH HNC	238	Small, 2023, 2302556	
P-Ce SAs@CoO	261	Adv. Mater., 2023, 35, 2302462	
S/N-CMF@FexCoyNi1-	296	Adv. Mater., 2023, 35, 2207888	
x-y-MOF			
M-NiA-CoN	180	Adv. Funct. Mater., 2023, 33, 2302014	
1-Co	390	Angew. Chem. Int. Ed., 2023, 62, e202305938	
H-2D Co/Mo ₂ C@NC	256	Chem. Eng. J., 2022 435 134815	
SnPi@CoP-Ni ₅ P ₄	180	J. Mater. Chem. A, 2022, 10,	
/NCF		13448–13455	
FeCoNiMo HEA	250	ACS Catal., 2022, 12, 10808–10817	
O-Co-N/C	290	Adv. Funct. Mater., 2022, 32, 2200763	
Co-POP	340	Angew. Chem. Int. Ed., 2022, 61, e202201104	
$Sr_2CoIrO_{6-\delta}$	210	Adv. Funct. Mater., 2021, 31, 2104746	
A-Zn/Co–Fe HNAs	226	Small, 2021, 17, 2104125	
Ir-O-Co	178	Angew. Chem. Int. Ed., 2021,	
		60, 27126 – 27134	
Fe-Co-O/Co@NC/NF	257	Small, 2021, 17, 2101312	
$Sr_2Co_{1.5}Fe_{0.5}O_{6-\delta}$	318	ACS Catal., 2021, 11,	
		4327-4337	
CoRu@NCHNSs-8h	238	This work	

Table S2. OER performance of the CoRu@NCHNSs in this work, in comparison with other state-of-the-art non-noble metal based catalysts in 1.0 M KOH from recent publications.

 Table S3. ICP-OES analysis for CoRu@NCHNSs-8h and CoRu@NCHNSs-9h.

Samples	Elements	Wt%	Atomic ratio
CoRu-8h	Со	17.44	10.48
	Ru	2.85	1
CoRu-9h	Co	16.86	9.82
	Ru	2.94	1

Catalysts	Overpotential (V)	Reference	
	at 10 mA cm ⁻²		
A-CFWO	1.55	J. Mater. Chem. A, 2021, 9, 9753–9760	
Co ₇ Fe ₃ /Co	1.5	Adv. Sci., 2023, 10, 2301961	
NiCu/Co	1.46	ACS Catal., 2023, 13, 10615-10626	
Co(OH) ₂ /La(OH) ₃ @Cu NWs	1.56	J. Mater. Chem. A, 2023, 11, 4355–4364	
Pt@LDH	1.49	Small, 2023, 19, 2207044	
CoO/ CoP-NC	1.53	J. Mater. Chem. A, 2023, 11, 3136–3147	
Co ₇ Fe ₃ /Co	1.50	Adv. Sci., 2023, 10, 2301961	
Fe _{1.2} (CoNi) _{1.8} Se _x	1.55	Adv. Energy Mater., 2023, 13, 2300837	
MOF-MoSAWSA	1.50	Nano Energy ,2023 112 108450	
CoP-Ni ₅ P ₄ /NF	1.47	J. Mater. Chem. A, 2023, 11, 1801–1809	
Co-NC@Ni ₂ Fe-LDH	1.55	Small, 2022, 18, 2107739	
Sn ₄ P ₃ /Co ₂ P SCNAs	1.56	Appl. Catal., B, 2022 304 120923	
MoS ₂ /NiPS ₃	1.64	Adv. Mater., 2022, 34, 2203615	
$Ni_2P/WS_2/Co_9S_8@C$	1.48	Chem. Eng. J., 2022 406 136961	
MoSe ₂ @NiCo ₂ Se ₄	1.51	Small, 2022, 18, 2200622	
CuN _x Co _x /NF	1.53	J. Mater. Chem. A, 2022, 10, 15520–15527	
Co-Ni ₃ S ₂	1.54	Small, 2021, 17, 2102097	
Ni ₂ P-CuP ₂	1.45	ACS Nano, 2021, 15, 5586-5599	
Fe-Ni ₂ P@PC/Cu _x S	1.62	Nano Energy, 2021 84 105861	
NCNT-NP@NF	1.54	ACS Catal., 2021, 11, 4327–4337	
CoRu @NCHNSs	1.56	This work	

Table S4. overall water splitting performance of the CoP NB in this work, in comparison with other state-of-the-art non-noble metal based catalysts in 1.0 M KOH from recent publications.

Reference of Supporting information

- 1. S. Liu, S. Geng, L. Li, Y. Zhang, G. Ren, B. Huang, Z. Hu, J.-F. Lee, Y.-H. Lai, Y.-H. Chu, Y. Xu, Q. Shao and X. Huang, *Nat. Commun.*, 2022, **13**, 1187.
- 2. C. Wang and L. Qi, Angew. Chem.-Int. Edit., 2020, 59, 17219-17224.