Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information (SI)

Preparation of Novel Heat-Resistant and Insensitive Fused Ring Energetic Materials

Teng Zhu, Caijin Lei, Chengchuang Li, Hongwei Yang*, Chuan Xiao *, Guangbin Cheng *

School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, China. Fax: (+) 86 25 8430 3286

E-mail: gcheng@mail.njust.edu.cn (G. Cheng), hyang@mail.njust.edu.cn (H. Yang)

Table of Contents

1. Computational details	3
1.1 Calculations of heats of formation	3
1.2 Calculations of the extrapolated peak temperature	4
2. The experiment and crystallographic data	5
3. ¹ H and ¹³ C NMR spectra of new compounds	10
4. TG and DSC of new compounds	15
5. The heat of combustion test of compounds 7 and 11	17

1. Computational details

1.1 Calculations of heats of formation

The calculation was performed by using the Gaussian 09 program package¹. The geometric optimization of all the structures and frequency analyses for calculation of heats of formation was carried out by using B3-LYP functional² with 6-311+G** basis set^{3,4}. All of the optimized structures were characterized to be local energy minima on the potential surface without any imaginary frequencies. The heats of formation (HOF) of these compounds were computed through appropriate isodesmic reactions (Scheme S1). Atomization energies were calculated by the CBS-4M⁵. Total energy and heat of formation for the reference compounds are summarized in Table S11. All the optimized structures were characterized to be true local energy minima on the potential-energy surface without imaginary frequencies.

Scheme S1 Isodesmic and tautomeric reactions to compute the HOF. Table S1 Total energy and heat of formation for the reference compounds

	E ₀ /a.u.	ZPE / kJ·mol ⁻¹	Δ HT / kJ mol ⁻¹	HOF / kJ mol ⁻¹
5	-875.9390	389.83	37.05	737.04

6	-895.8100	359.23	36.03	552.40
7	-1100.3500	365.53	42.82	590.59
10	-1193.2200	519.63	49.14	1158.08
11	-1602.3100	532.10	62.48	1221.90
CH_4	-40.5339	112.26	10.04	-74.60
CH ₃ NH ₂	-95.8938	160.78	11.64	-22.5
CH ₃ CH ₃	-79.8565	187.31	11.79	-84.01
CH ₃ NO ₂	-245.092	124.93	11.60	-80.80
	-595.4680	216.37	22.09	612.94
NNH	-226.2600	179.20	12.57	177.40
	-670.7390	228.55	25.36	373.01
	-743.0860	258.34	27.33	788.14

References

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Laham, C. Y. Peng, A. Nanayakkara, C,Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople. Gaussian 09, revision A. 01; Gaussian, Inc.: Wallingford, CT, 2009.

- (2) A. D. Becke, J. Phys. Chem. 1993, 98, 5648.
- (3) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
- (4) P. C. Hariharan, J. A. Pople. Theoretica Chimica Acta. 1973, 28, 213.
- (5) J. W. Ochterski, G. A. Petersson, J. A. Montgomery, J. Chem. Phys. 1996, 104, 2598.

1.2 Calculations of the extrapolated peak temperature

Table S2 The calculated T_p and T_{p0} values of compound 6, 7, 11, HNS and TATB at different

heating rates			
Compound	β / °C·min ⁻¹	$T_{\rm p}/^{\circ}{\rm C}$	$T_{\rm p0}/$ °C
6	5	377	
	10	385	272
	15	392	572
	20	394	
7	5	375	363

	10	384	
	15	390	
	20	393	
	5	349	
11	10	359	225
11	15	365	333
	20	367	
	5	332	
INC	10	340	220
HNS	15	351	328
	20	364	
	5	368	
ТАТЪ	10	379	240
IAIB	15	385	549
	20	389	
$T_{pi} = T_{p0} + b\beta_i$	$+c\beta_i^2+d\beta_i^3$,	i = 1,2,3N	(1)

Note: 1) β is the heating rate of the sample. 2) T_{pi} is the peak temperature of the sample when the heating rate is β . 3) T_{p0} is the peak temperature of the sample when the heating rate approaches zero.

2. The experiment and crystallographic data

Experimental section

Caution! Although we experienced no explosion in handling these energetic materials, the use of small scale and best safety practices (leather gloves, face shield) are strongly encouraged!

General methods

Reagents were purchased from Aldrich and Acros Organics and are used as received. ¹H and ¹³C NMR spectra are recorded on a 500 MHz (Bruker AVANCE 500) NMR spectrometer operating at 500 and 125 MHz, respectively. The decomposition points are obtained on a differential scanning calorimeter (METTLER TGA/DSC1) at a heating rate of 5°C min⁻¹. IR spectra are recorded on a FT-IR spectrometer (Thermo Nicolet AVATAR 370) as thin films by using KBr plates. Densities are determined at 25 °C by employing a Micromeritics AccuPyc II 1340 gas pycnometer. Elemental analyses were carried out by using a Vario Micro cube Elementar Analyser. Impact and friction tester. Detonation velocity and detonation pressure data are calculated by program package EXPLO5 (version 6.01). The heat of combustion is tested by Paii 6200 Calorimeter. The samples were dried in a hydrothermal oven at 40°C at least for 24 hours to remove the solvent before all tests. There is no solvent peak in the TG of the dry sample.

X-ray crystallography

The data for 6·CH₃OH, 7 and 11·CH₃OH were collected with a Bruker SMART APEX II CCD diffractometer with graphite-monochromated Mo-Ka radiation (λ =0.71073 nm) at 170 K. The data collection and the initial unit cell refinement are performed by using APEX2 (v2010.3-0). Data Reduction is performed by using SAINT (v7.68A) and XPREP (v2008/2). Empirical absorption corrections are applied by using the SADABS (v2008/1) program. The structures are solved by direct methods and refined by the full matrix least-squares based on F2 using SHELXTL--2014/7 (Sheldrick, 2014) programme package. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms attached to ligands are included using a riding model. The crystallographic data and CCDC numbers for these compounds are summarized in Table S2

Compound	6 ·CH₃OH	7	11·CH ₃ OH
Empirical formula	$C_9H_8N_8O_3$	$C_8H_3N_9O_4$	$C_{13}H_8N_{14}O_6$
Formula weight	276.23	289.19	456.33
Temperature/K	193.00	170	193.00
Crystal system	monoclinic	trigonal	triclinic
Space group	$P2_1/c$	R-3	P-1
a/Å	8.7309(4)	23.212(3)	7.2696(8)
b/Å	19.6818(10)	23.212(3)	10.8752(12)
c/Å	6.9104(4)	11.2896(19)	12.1046(14)
a/°	90	90	93.652(5)
β/°	105.115(3)	90	102.562(6)
γ/°	90	120	103.331(5)
Volume/Å ³	1146.40(10)	5267.8(15)	902.34(18)
Z	4	18	2
$\rho_{calc} g/cm^3$	1.600	1.641	1.680
μ/mm ⁻¹	1.085	0.137	0.764
F (000)	568.0	2628.0	464.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$	$0.11 \times 0.04 \times 0.02$	0.11 imes 0.1 imes 0.08

Table S3 Crystallographic Data for 6 CH₃OH, 7 and 11 CH₃OH

Radiation	CuKα (λ=1.54178)	MoKa($\lambda = 0.71073$)	$GaK\alpha (\lambda = 1.34139)$
2Θ range for data collection/°	8.986 to 135.84	4.138 to 52.71	6.556 to 107.902
	$-10 \le h \le 8,$	$21 \leq h \leq 28,$	$-8 \le h \le 8,$
Index ranges	$-20 \le k \le 23,$	$-28 \le k \le 28,$	$-13 \le k \le 13,$
	$-6 \le l \le 8$	$-12 \le 1 \le 14$	$-14 \le l \le 14$
Reflections collected	10625	10264	8244
Independent	$2076[R_{int} = 0.0440,$	2389 [$R_{int} = 0.0889$,	$3249 [R_{int} = 0.0859,$
reflections	$R_{sigma} = 0.0305]$	$R_{sigma} = 0.0788$]	$R_{sigma} = 0.0909]$
Data/restraints/parameters	2076/0/187	2389/2/198	3249/1/304
Goodness-of-fit on F ²	1.069	1.063	1.069
	$R_1 = 0.0401,$	$R_1 = 0.0566,$	$R_1 = 0.0872,$
Final R indexes $[I \ge 2\sigma(I)]$	$wR_2 = 0.1047$	$wR_2 = 0.1240$	$wR_2 = 0.2279$
	$R_1 = 0.0487,$	$R_1 = 0.1063,$	$R_1 = 0.1205,$
Final R indexes [all data]	$wR_2 = 0.1118$	$wR_2 = 0.1601$	$wR_2 = 0.2455$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.22	0.31/-0.39	0.67/-0.53
CCDC No.	2303258	2303259	2303260

Table S4. Bond lengths [Å] and angles [°] for $6 \cdot CH_3OH$.

Parameter	Bond lengths [Å]	Parameter	Bond lengths [Å]
O1-C1	1.210(2)	N3-C4	1.293(2)
O2-N2	1.403(2)	N4-C5	1.383(2)
O2-N3	1.385(2)	N4-C3	1.388(2)
O3-C9	1.424(3)	N4-C4	1.391(2)
О3-Н3	0.8400	N5-C3	1.308(2)
N1-C2	1.367(2)	N5-N6	1.383(2)
N1-C1	1.373(2)	N6-C5	1.318(2)
N2-C2	1.302(2)	N7-C8	1.333(2)
Parameter	Bond angles [°]	Parameter	Bond lengths [Å]
N2-O2 -N3	111.61(14)	C2-N1 -H1	118.2(16)
С9-О3 -Н3	109.00	C1-N1 -H1	120.5(16)
C1-N1 -C2	120.27(16)	N7-N8 -H8	124.00
O2-N2 -C2	104.13(15)	C7-N8 -H8	124.00

N7-N8 -C7	112.68(15)	N4-C3 -C1	123.80(15)
N8-N7 -C8	104.77(14)	N5-C3 -C1	126.22(16)
N5-N6 -C5	108.68(13)	N2-C2 -C4	109.28(16)
N6-N5 -C3	107.47(14)	N1-C2 -C4	123.97(16)
C3-N4 -C5	105.01(13)	N1-C2 -N2	126.74(17)
C4-N4 -C5	137.76(15)	O1-C1 -C3	121.38(16)
C3-N4 -C4	117.23(14)	01-C1 -N1	122.92(17)
O2-N3 -C4	104.10(15)	N1-C1 -C3	115.70(16)

Table S5. Bond lengths [Å] and angles [°] for 7.

Parameter	Bond lengths [Å]	Parameter	Bond lengths [Å]
01-N1	1.396(4)	N3-C3	1.369(5)
O1-N2	1.396(3)	N4-C1	1.390(5)
O2-N9	1.227(3)	N4-C4	1.367(4)
O3-N9	1.224(4)	N4-C5	1.377(4)
O4-C3	1.219(4)	N5-N6	1.386(3)
N1-C1	1.294(5)	N6-C5	1.322(5)
N2-C2	1.309(5)	N7-N8	1.353(4)
N3-C2	1.363(5)	N7-C8	1.340(5)
Parameter	Bond angles [°]	Parameter	Bond lengths [Å]
N1-01 -N2	112.1(3)	O2-N9 -C7	117.4(3)
01-N1 -C1	103.0(2)	O3-N9 -C7	117.8(3)
O1-N2 -C2	104.3(3)	С2-N3 -Н3	124(3)
C2-N3 -C3	120.7(3)	СЗ-NЗ -НЗ	115(3)
C1-N4 -C4	118.4(3)	N8-N7 -H7	120(2)
C1-N4 -C5	135.8(3)	C8-N7 -H7	127(2)
C4-N4 -C5	105.3(3)	N1-C1 -N4	129.9(3)
N6-N5 -C4	107.2(3)	N1-C1 -C2	112.0(3)
N5-N6 -C5	108.0(3)	N4-C1 -C2	118.1(3)
N8-N7 -C8	113.3(3)	N2-C2 -C1	108.6(3)
N7-N8 -C7	102.8(3)	N3-C2 -C1	123.7(4)
O2-N9 -O3	124.8(3)	N2-C2 -N3	127.7(3)
N1-O1 -N2	112.1(3)	O4-C3 -N3	123.1(3)

Table S6. Bond lengths [Å] and angles [°] for 11·CH₃OH.

Parameter	Bond lengths [Å]	Parameter	Bond lengths [Å]
01-N1	1.392(4)	N1-C1	1.294(5)
O1-N2	1.398(4)	N2-C2	1.303(5)
O2-N11	1.223(5)	N3-C1	1.396(4)
O3-N11	1.235(5)	N3-C5	1.380(5)

O4-N14	1.216(6)	N3-C4	1.367(4)
O5-N14	1.220(5)	N4-N5	1.395(5)
O6-C13	1.455(8)	N4-C5	1.312(5)
O6-H6	0.8400	N5-C4	1.307(5)
Parameter	Bond angles [°]	Parameter	Bond lengths [Å]
N1-O1 -N2	112.5(3)	N8-N7 -C9	108.4(3)
С13-Об -Нб	110.00	N7-N8 -C3	106.7(3)
01-N1 -C1	103.8(3)	N10-N9-C7	113.3(3)
O1-N2 -C2	103.3(3)	N9 -N1-C8	103.6(3)
C1-N3 -C5	134.3(3)	O2 -N1-O3	124.1(4)
C4-N3 -C5	105.3(3)	O2 -N1-C8	118.2(3)
C1-N3 -C4	120.3(3)	O3 -N1-C8	117.7(4)
N5-N4 -C5	108.4(3)	N13-N1-C11	112.9(3)
N4-N5 -C4	106.6(3)	N12-N1-C12	103.0(3)
C2-N6 -C3	120.7(3)	O4 -N1-O5	124.1(5)
C2-N6 -C9	134.7(3)	O4 -N1-C12	118.9(4)
C3-N6 -C9	104.4(3)	O5 -N1-C12	117.1(4)

Table S7 Hydrogen bonds of $6 \cdot CH_3OH$

D- H····A	d(D-H)/Å	d(H…A)∕ Å	d(D···A)/Å	<(DHA)/ °
N1-H1…O3	0.96(3)	1.72(3)	2.667(2)	178
O3-H3…N7	0.84	1.92	2.7611(19)	177
N8-H8…N5	0.88	2.17	3.053(2)	123
С7-Н7⋯О1	0.95	2.36	2.983(2)	137
C7-H7…N3	0.95	2.23	2.997(2)	145
С9-Н9А…О2	0.98	2.49	3.340(3)	178

Table S8 Hydrogen bonds of 7

D- H····A	d(D-H)/Å	d(H···A)∕ Å	d(D···A)/Å	<(DHA)/ °
N7-H7…N5	0.88(3)	2.12(3)	2.997(4)	172(4)
С8-Н8…О4	0.95	2.47	2.995(4)	115

Table S9 Hydrogen bonds of 11·CH₃OH

D-H ····A	d(D-H)/Å	d(H…A)∕ Å	d(D···A)/Å	<(DHA)/ °
O6-H6…N8	0.84	2.11	2.933(5)	165
N9-H9⋯O6	0.91(2)	1.81(2)	2.693(5)	163(4)
N12-H12…N4	0.88	2.12	2.922(5)	151
С7-Н7…О2	0.95	2.3	3.126(5)	145
C11-H11O6	0.95	2.47	3.280(6)	143

3. ¹H and ¹³C NMR spectra of new compounds

Figure S1 ¹H NMR spectra (500 MHz) of 5 in $[D_6]$ DMSO at 25 °C.

Figure S2 ¹³C NMR spectra (125 MHz) of 5 in [D6] DMSO at 25 °C.

Figure S3 ¹H NMR spectra (500 MHz) of 6 in $[D_6]$ DMSO at 25 °C.

Figure S4 ¹³C NMR spectra (125 MHz) of 6 in [D6] DMSO at 25 °C.

Figure S5 ¹H NMR spectra (500 MHz) of 7 in $[D_6]$ DMSO at 25 °C.

Figure S6 ¹³C NMR spectra (125 MHz) of 7 in [D6] DMSO at 25 °C.

Figure S8 13 C NMR spectra (125 MHz) of 10 in [D6] DMSO at 25 °C.

Figure S9 ¹H NMR spectra (500 MHz) of 11 in $[D_6]$ DMSO at 25 °C.

Figure S10 ¹³C NMR spectra (125 MHz) of 11 in [D6] DMSO at 25 °C.

4. TG and DSC of new compounds

Figure S12 TG and DSC of 6

Figure S14 TG and DSC of 10

Figure S15 TG and DSC of 11

5. The heat of combustion test of compounds 7 and 11.

Scheme 2 a, c: the the sample of 7 and 11; b, d: the residue of the sample 7 and 11 after the heat

of combustion test

Compound	pre-test	residual	mass	heat of combustion	$\Delta_{\rm f} H_{ m m}$
	mass/g	mass/g	reduction/%	value/ kJ mol ⁻¹	kJ mol ⁻¹ / kJ g ⁻¹
7	0.6447	0.0074	98.85	4149.38	572.6/1.98
11	0.6893	0.0032	99.54	6456.25	1162.5/2.74

 $C_8H_3N_9O_4(s) + 6.75O_2(g) \longrightarrow 8CO_2(g) + 1.5H_2O(I) + 4.5N_2(g)$

$$C_{12}H_4N_{14}O_5(s) + 10.5O_2(g) \longrightarrow 12CO_2(g) + 2H_2O(I) + 7N_2(g)$$

Table S10 the sample mass and heat of combustion value of 7 and 11 $\,$