Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Extremely efficient and stable hydrogen evolution by a Pt/NiO_x composite film deposited on a nickel foam using a mixed metal-imidazole casting method

Zaki N. Zahran,^{a,b*}, Yuta Tsubonouchi,^a Debraj Chandra^a, Tomoki Kanazawa,^c Shunsuke Nozawa,^c Eman A. Mohamed,^a Norihisa Hoshino^a and Masayuki Yagi,^{a*}

^aDepartment of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan.

^bFaculty of Science, Tanta University, Tanta 511111, Egypt.

^c Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan

*Correspondence to: yagi@eng.niigata-u.ac.jp and znzahran@eng.niigata-u.ac.jp

Contents:

Table S1. Comparison of Pt-film(w) with the state-of-the-art Pt-based catalysts for HER performances.

Figure S1. XRD of NF before and after calcination at 450 °C.

Figure S2. SEM image of a bear NF surface.

Figure S3. EDS spectra of Pt-film(w) and Pt-film(w/o) on a NF substrate.

Catalysts	Current collectors	$\Gamma_{\rm Pt}$ (mg cm ⁻²)	Fabrication methods	η^{10} / η^{100} (mV)	Tafel slope (mV dec ⁻¹)	Stability	$j_{\rm m}$ at $\eta = 50$ m V (A cm ⁻² mg _{Pt} ⁻¹)	Ref.
Pt-film(w)	NF	1.08	Drop casting/calcination	4.2/26.6	23	CP: η^{10} and η^{100} remained constant at ~5.0 and 27 mV for 60 h.	0.42	TW
Pt	GC	0.098	Drop casting/calcination	60/170	62	CP: η^{10} increased from 60 to 131 mV after 20 h.	0.073	S 1
Pt	FTO	0.098	Drop casting/calcination	198/NA	142	CP: η^{10} increased from 150 to 230 mV after 20 h.	NA	S2
Pt ₃ Ni-NiS	NF	~1.0	Electrophoretic	12/73	24	CA: At $\eta = 12 \text{ mV}$, <i>j</i> remained constant at 10 mA cm ⁻² for 192 h	0.075	S3
Pt	NF	~1.0	Electrophoretic	22/107	31	CA: At $\eta = 22 \text{ mV}$, <i>j</i> decreased from 10 to 6 mA cm ⁻² after 48h.	0.035	S3
Pt/NiO/Ni	NF	0.092	Electrodeposition	34/110	39	CP: η^{10} increased from 34 to 55 mV after 24 h.	0.220	S4
Pt/Ni	NF	0.113	Electrodeposition	50/150	56	NA	0.090	S4
Pt-Ni ₃ N	Ni mesh	0.300	LSV deposition	50/110	36.5	CA: At $\eta = 50 \text{ mV}$, <i>j</i> decreased from 10 to 8 mA cm ⁻² after 24h.	0.033	S5
PtO ₂ -Ni(OH) ₂ NS	Ti	0.0755	Hydrothermal	80/280 70/250	89	CP: η^{20} remained constant at ~300 mV for 100 h.	0.093 0.132	S 6
PtCo-Co	Ti mesh	0.0430	Hydrothermal/calcinatio	28/105	35	CA: <i>j</i> remained constant at 20 mA cm^{-2} for 50 h, but <i>n</i> was not shown.	0.51	S 7
Pt(111) modified by Ni(OH) ₂	Pt	NA	Electrodeposition	138/NA	100-130	CA: At $\eta = 80$ and 110 mV, <i>j</i> remained constant at 3.7 and 7.7 mA cm ⁻² for 2.25 h, respectively.	NA	S 8
Pt modified by Ni(OH) ₂	Pt	NA	Chemical deposition	~45 (η ⁵)/NA	75	NA	NA	S9
Pt _{SA} -Co(OH) ₂	Ag	0.059	Cyclic voltametric deposition	29/104	35.7	CP: η^{20} remained constant at 65 mV for 50 h, but η^{100} increased from 140 to 150 after 20 h.	0.42	S10
Pt ₁₃ Cu ₇₃ Ni ₁₄ /CNF	C felt	6.653	Impregnation/galvanic displacement	67/NA	54	CA: At $\eta = 100 \text{ mV}$, <i>j</i> decreased by 18% of its initial value after 0.28 h	0.013	S11
Pt ₃ Ni ₂ NW-S/C	GC	0.077	Drop casting with	51/NA	NA	CP: η^5 increased from 30 to 40 after	0.120	S12

Table S1. Comparison of the Pt-film(*w*) electrode with the state-of-the-art Pt-based electrocatalysts with the excellent η^{10} values less than 200 mV for HER performances in 1.0 M KOH media (pH 14)^a.

			Nafion			5h.		
Pt-Ni AS	GC	0.0170	Drop casting with Nafion	27.7/NA	27	NA	1.50	S13
Pt ₃ Ni/C nanoframs/Ni(OH) ₂	GC	0.0100	Drop casting with Nafion	63 (η ⁵)/NA	NA	NA	0.31	S14
Pt NW/SL-Ni(OH) ₂	GC	0.0161	Drop casting with Nafion	$70 (\eta^{2.5})/N A$	NA	NA	0.09	S15
Pt-BP/GR	GC	0.0143	Drop casting with Nafion	21/80	46.9	NA	3.2	S16
Pt _{sA} -NiO/Ni/Ag NW	Flex. cloth	0.0054	Hydrothermal/ electrodeposition	26/85	27.1	CP: η^{20} remained constant at 40 mV for 30 h.	6.85	S17
Pt _{SA} -MoSe ₂	GC	0.0029	Drop casting with Nafion	29/110	41	NA	5.17	S18
Pt _{SA} -N-C	GC	0.0063	Drop casting with Nafion	46/220	36.8	CP: η^{10} remained constant at 46 mV for 20 h.	1.90	S19
Pt _{SA} /AG	GC	0.0311	Drop casting with Nafion	12/NA	30.6	NA	0.80	S20
In-Pt _{SA} NW/C	GC	0.0128	Drop casting with Nafion	46/NA	32.4	CP: η^{10} remained constant at 46 mV for 5 h.	0.86	S21
Hcp-Pt-Ni/C	GC	0.0076	Drop casting with Nafion	65/NA	78	CA: At $\eta = 65 \text{ mV}$, <i>j</i> decreased from 10 to 5 mA cm ⁻² after 1h.	1.60	S22
PtNi-O/C	GC	0.0051	Drop casting with Nafion	40/105	78.8	CP: η^{10} increased from 40 to 100 mV after 10 h.	3.92	S23
Pt _{3.6} Ni-S NW/C	GC	0.0153	Drop casting with Nafion	20/NA	114.8	CP: η^5 increased from 15 to 33 mV after 5 h.	2.61	S24
PtNi NP/Ni NSA	C cloth	0.0693	Drop casting with Nafion	38/NA	42	CP: η^{20} increased from 50 to 90 mV after 90 h.	NA	S25
Pt ₃ Ni ₃ NW/C-air	GC	0.0153	Drop casting with Nafion	40/NA	NA	CP: η^5 increased from 30 to 40 mV after 3 h.	0.65	S26, 27
Pt ₁ Ru _{1.54} NC/BP	GC	0.0148	Drop casting with Nafion	22/75	19	CP: At $\eta = 22 \text{ mV}$, <i>j</i> decreased from 10 to 7 mA cm ⁻² after 20 h.	3.38	S28
Pt-Co(OH) ₂	C cloth	0.3900	Electrodeposition	32/115	70	CP: η^5 increased from 32 to 90 mV after 20 h,	0.05	S29
Pt-Ni octahedra/C	GC	0.0062	Drop casting with	70/NA	59	CP: η^4 increased from 25 to 50 mV	1.81	S30

			Nafion			after 1 h,		
Pt-2D-(NiOH) ₂ /C	GC	0.0011 3	Drop casting with Nafion	180/NA	72	CA: At $\eta = 100$ mV, <i>j</i> decreased by 49% of its initial value after 5.56 h.	0.88	S31
PtNiCo alloy	GC	0.0100	Drop casting with	$22(\eta^{5})$	NA	NA	NA	S32
nanohexapod/C			Nafion	/NA				

^{a)} GC: Grassy carbon, TW: this work, NA: not available, CP: chronopotentiometry, CA: chronoamperometry, NS: nanosheet, Pt_{SA}:Pt single atom, CNF: carbon nanofiber, NW: nanowires, AS: anisotropic, SL: single layered, BP: black phosphorous, GR: graphite, N-C: nitrogen doped carbon, AG: aniline-stacked graphene, Hcp: hexagonal close-packed superstructure, NP nanoparticle, NSA: nanosheet array, air: thermally annealed in air, NC: nanocrystals, 2D: two dimensional.

Figure S1. X-ray diffraction patterns (XRD) of the bare NF substrate before (black, below) and after (violet, above) calcination at 450 °C.

Figure S2. SEM image (top view) of the bare NF surface.

Figure S3. EDS spectra of (A) Pt-film(w) and (B) Pt-film(w/o) on the NF substrate, as measured with SEM observation.

References

- S1 Z. N. Zahran, E. A. Mohamed, T. Katsuki, Y. Tsubonouchi, D. Chandra, N. Hoshino and M. Yagi, *Sustainable Energy Fuels*, 2022, **6**, 4265–4274.
- S2 Z. N. Zahran, E. A. Mohamed, T. Katsuki, Y. Tsubonouchi, D. Chandra, N. Hoshino and M. Yagi, *Int J Hydrogen Energy*, 2023.
- S3 C. Panda, P. W. Menezes, S. Yao, J. Schmidt, C. Walter, J. N. Hausmann and M. Driess, *J Am Chem Soc*, 2019, **141**, 13306–13310.
- S4 Z. J. Chen, G. X. Cao, L. Y. Gan, H. Dai, N. Xu, M. J. Zang, H. Bin Dai, H. Wu and P. Wang, ACS Catal, 2018, 8, 8866–8872.
- S5 Y. Wang, L. Chen, X. Yu, Y. Wang and G. Zheng, *Adv Energy Mater*, 2017, 7, 1601390.
- S6 L. Xie, X. Ren, Q. Liu, G. Cui, R. Ge, A. M. Asiri, X. Sun, Q. Zhang and L. Chen, J Mater Chem A Mater, 2018, 6, 1967–1970.
- S7 Z. Wang, X. Ren, Y. Luo, L. Wang, G. Cui, F. Xie, H. Wang, Y. Xie and X. Sun, *Nanoscale*, 2018, 10, 12302–12307.
- R. Subbaraman, D. Tripkovic, D. Strmenik, K. C. Chang, M. Uchimura, a P. Paulikas,
 V. Stamenkovic and N. M. Markovic, *Science*, 2011, 334, 1256–1260.
- N. Danilovic, R. Subbaraman, D. Strmcnik, K. C. Chang, A. P. Paulikas, V. R. Stamenkovic and N. M. Markovic, *Angewandte Chemie International Edition*, 2012, 51, 12495–12498.
- S10 K. L. Zhou, C. Wang, Z. Wang, C. B. Han, Q. Zhang, X. Ke, J. Liu and H. Wang, *Energy Environ. Sci.*, 2020, 13, 3082–3092.
- S11 Y. Shen, A. C. Lua, J. Xi and X. Qiu, ACS Appl Mater Interfaces, 2016, 8, 3464–3472.
- S12 P. Wang, X. Zhang, J. Zhang, S. Wan, S. Guo, G. Lu, J. Yao and X. Huang, *Nat Commun*, 2017, 8, 14580.
- S13 Z. Zhang, G. Liu, X. Cui, B. Chen, Y. Zhu, Y. Gong, F. Saleem, S. Xi, Y. Du, A. Borgna, Z. Lai, Q. Zhang, B. Li, Y. Zong, Y. Han, L. Gu and H. Zhang, *Advanced Materials*, 2018, 30, 1801741.
- S14 C. Chen, Y. Kang, Z. Huo, Z. Zhu, Huang. W., H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somojai, P. Yang and V. R. Stamenkovic, *Science*, 2014, 343, 1339–1343.
- S15 H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao, Y. Gao and Z. Tang, *Nat Commun*, 2015, 6, 6430.
- S16 X. Wang, L. Bai, J. Lu, X. Zhang, D. Liu, H. Yang, J. Wang, P. K. Chu, S. Ramakrishna and X. F. Yu, *Angewandte Chemie International Edition*, 2019, 58, 19060–19066.
- S17 K. L. Zhou, Z. Wang, C. B. Han, X. Ke, C. Wang, Y. Jin, Q. Zhang, J. Liu, H. Wang and H. Yan, *Nat Commun*, 2021, **12**, 3783.
- S18 Y. Shi, Z. R. Ma, Y. Y. Xiao, Y. C. Yin, W. M. Huang, Z. C. Huang, Y. Z. Zheng, F. Y. Mu, R. Huang, G. Y. Shi, Y. Y. Sun, X. H. Xia and W. Chen, *Nat Commun*, 2021, 12, 3021.
- S19 S. Fang, X. Zhu, X. Liu, J. Gu, W. Liu, D. Wang, W. Zhang, Y. Lin, J. Lu, S. Wei, Y. Li and T. Yao, *Nat Commun*, 2020, **11**, 1029.
- S. Ye, F. Luo, Q. Zhang, P. Zhang, T. Xu, Q. Wang, D. He, L. Guo, Y. Zhang, C. He, X. Ouyang, M. Gu, J. Liu and X. Sun, *Energy Environ. Sci.*, 2019, 12, 1000–1007.
- S21 Y. Zhu, X. Zhu, L. Bu, Q. Shao, Y. Li, Z. Hu, C. Te Chen, C. W. Pao, S. Yang and X. Huang, *Adv Funct Mater*, 2020, **30**, 2004310.
- S22 Z. Cao, Q. Chen, J. Zhang, H. Li, Y. Jiang, S. Shen, G. Fu, B. A. Lu, Z. Xie and L. Zheng, *Nat Commun*, 2017, 8, 15131.

- S23 Z. Zhao, H. Liu, W. Gao, W. Xue, Z. Liu, J. Huang, X. Pan and Y. Huang, *J Am Chem Soc*, 2018, **140**, 9046–9050.
- S24 Z. Liu, J. Qi, M. Liu, S. Zhang, Q. Fan, H. Liu, K. Liu, H. Zheng, Y. Yin and C. Gao, *Angewandte Chemie International Edition*, 2018, **57**, 11678–11682.
- S25 L. Xie, Q. Liu, X. Shi, A. M. Asiri, Y. Luo and X. Sun, *Inorg Chem Front*, 2018, 5, 1365–1369.
- S26 P. Wang, K. Jiang, G. Wang, J. Yao and X. Huang, *Angewandte Chemie*, 2016, **128**, 13051–13055.
- S27 P. Wang, K. Jiang, G. Wang, J. Yao and X. Huang, *Angewandte Chemie International Edition*, 2016, **55**, 12859–12863.
- S28 Y. Li, W. Pei, J. He, K. Liu, W. Qi, X. Gao, S. Zhou, H. Xie, K. Yin, Y. Gao, J. He, J. Zhao, J. Hu, T. S. Chan, Z. Li, G. Zhang and M. Liu, ACS Catal, 2019, 10870–10875.
- S29 Z. Xing, C. Han, D. Wang, Q. Li and X. Yang, ACS Catal, 2017, 7, 7131–7135.
- S30 R. Kavian, S. Il Choi, J. Park, T. Liu, H. C. Peng, N. Lu, J. Wang, M. J. Kim, Y. Xia and S. W. Lee, *J Mater Chem A Mater*, 2016, **4**, 12392–12397.
- S31 L. Wang, Y. Zhu, Z. Zeng, C. Lin, M. Giroux, L. Jiang, Y. Han, J. Greeley, C. Wang and J. Jin, *Nano Energy*, 2017, **31**, 456–461.
- S32 A. Oh, Y. J. Sa, H. Hwang, H. Baik, J. Kim, B. Kim, S. H. Joo and K. Lee, *Nanoscale*, 2016, **8**, 16379–16386.