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Figure S1. The formation mechanism of various carbon materials with different
PSSMA amount. (a) sphere-like carbon material without PSSMA, (b) rod-like carbon
material with 100 mg of PSSMA, and (c) shell-like carbon superstructure with 150 mg
of PSSMA.
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Figure S3. SEM images of rod-like carbon materials.

Figure S4. SEM images of shell-like carbon superstructures.
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Figure S5. XRD patterns of three samples.
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Figure S6. Nitrogen adsorption desorption isotherms of (a) sphere-like, (b) rod-like,

and (c) shell-like carbon superstructures.
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Figure S7. Raman spectra of (a) sphere-like, (b) rod-like, and (c) shell-like carbon

superstructures.
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Figure S8. Imaginary part of the permittivity vs frequency of sphere-like, rod-like and
shell-like carbon superstructures.
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Figure S9. Z values vs frequency of three samples at the thicknesses corresponding to

their respective strongest reflection loss values.
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Figure S10. Cole-Cole curves vs frequency of (a) sphere-like, (b) rod-like, and (c)

shell-like carbon superstructures.

Table S1. Microwave absorption properties of carbon materials have been reported.

Maximum Matching Maximum
Absorber RL (dB frequency EAB (G
) (GHz) Hz)

Matching

Ref
thickness(mm) ©




N-doped carbon
microsphere
composites with -46.8 10.4 3.7 2.7 S1
concavo-convex
surface

Biomass
hierarchical -47.463 9.796 3.402 2.8 S2
porous carbon

hollow carbon

-38.0 — 1.1 4 S3
cubes

porous carbon

hollow nanoboxes -30.46 15.68 5.44 2.2 S4

mushroom cap-
shaped porous -42.40 14.86 4.37 1.6 S5
carbon particles

Multi-shell
hollow porous

-18.13 14.66 5.17 1.6 S6
carbon
nanoparticles
Shaddock
Pecl-Based -29.50 — 2.44 2.5 S7
Carbon

three-dimensional
cross-linked -44 44 — 3.64 1.17 S&
carbon fiber
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