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Fig. S1. Chemical structures and corresponding structural diagrams of TBAPF6.
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Fig. S2. The solubility of TBAPF6 in (a) isopropanol and (b) chlorobenzene.
According to previous reports, isopropyl alcohol (IPA) and chlorobenzene (CB) were 
common solvents for Surface treatment of as-deposited CsPbI3 films and were used in 
this work.1-3 The same amount of TBAPF6 was added in equal volume of IPA or CB. 
After stirring, TBAPF6 couldn’t dissolve in IPA and there was a large amount of 
precipitation at room temperature. With heating, TBAPF6 gradually dissolved in IPA 
and a colorless and transparent solution would be observed. However, crystal particles 
would precipitate rapidly after cooling down (Fig. S2a). In contrast, TBAPF6 could well 
dissolve in CB to form a colorless and transparent solution at room temperature (Fig. 
S2b).
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Fig. S3. (a) X-ray diffraction patterns of the [TBA]PbI3 single crystal immersed in 
deionized water or CB for 7 days. (b) TGA curve of the low-dimensional material 
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[TBA]PbI3.
On one hand, under the consideration of moisture stability of synthetic [TBA]PbI3 
single crystals, [TBA]PbI3 was immersed in deionized water at room temperature for 7 
days. On the other hand, the using of hole transport material (HTM) in this work is 
Spiro-OMeTAD and CB is the common solvent for Spiro-OMeTAD.4-6 Therefore, the 
spinning coating of hole transport layer (HTL) could cause damage to perovskite layer, 
and the similar experiment was conducted by soaking [TBA]PbI3 into CB. Herein, we 
used XRD to estimate the degradation of [TBA]PbI3 single crystals (Fig. S3a).
[TBA]PbI3 single crystals exhibited excellent thermal stability by thermogravimetric 
analysis (TGA) measurement. The weight loss of synthetic [TBA]PbI3 single crystals 
was only 1 wt% when temperature increased up to 220 °C, and the apparent weight 
losses happened at temperature ranges from 220 °C to 400 °C and from 400 °C to 600 
°C, corresponding to volatilization of TBAI and sublimation of PbI2, respectively.7
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Fig. S4. Water contact angle measurements on the surface of (a) control and (b) 
TBAPF6-treated films.
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Fig. S5. Schematic diagram of the preparation of CsPbI3 films with surface treatment 
of TBAPF6.
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Fig. S6. (a) SEM image of TBAPF6-treated film, (b-f) Elemental analysis spectra of Cs, 
Pb, I, P, and F.
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Fig. S7. Relative content analysis results of different elements on the surface of the 
TBAPF6-treated film.
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Fig. S8. UV‒vis absorption spectra of the control and TBAPF6-treated films.
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Fig. S9. SEM images of (a) control and (b) TBAPF6-treated films.
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Fig. S10. AFM images of (a), (c) control and (b), (d) TBAPF6-treated films.
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Fig. S11. XPS spectra of TBAPF6 sample and TBAPF6-treated films. (a) F 1s, (b) N 1s.
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Fig. S12. PCEs statistics of C-PSCs treated with different concentrations of TBAPF6.
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Fig. S13. Histograms of the (a) VOC, (b) JSC, (c) FF, and (d) PCE values based on the 
control and TBAPF6-treated devices.
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Fig. S14. Reverse scan (RS) and forward scan (FS) of TBAPF6-treated devices.
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Fig. S15. Reverse scan and forward scan of control devices.

Table S1. Fitted parameters from TRPL spectra for the control and TBAPF6-treated 
films.

τ1 (ns) τ2 (ns) f1 (%) f2 (%) τave (ns)
Control 2.4 28.2 12.1 87.9 27.9

TBAPF6-treated 2.0 37.5 6.7 93.3 37.3

Table S2. Photovoltaic parameters of the control and TBAPF6-treated devices.
VOC (V) JSC (mA cm)-2 FF (%) PCEbest (PCEavg) (%)

Control 1.03 19.93 80.9 16.55 (15.69 ± 0.86)

TBAPF6-treated 1.06 20.01 82.2 17.47 (16.72 ± 0.75)

Table S3. Photovoltaic parameters of the control and TBAPF6-treated devices in the 
reverse scan and forward scan directions.

VOC (V) JSC (mA cm)-2 FF (%) PCE (%) ha

RS 1.03 19.48 80.9 16.17
Control

FS 1.00 19.70 66.8 13.17
18.6%

RS 1.05 19.87 83.2 17.41TBAPF6-
treated FS 1.03 19.59 79.2 15.94

8.5%

ah = (PCERS - PCEFS) /PCERS, where RS and FS represent the reverse and forward scan 
directions, respectively.
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