Supporting Information

Low-dimensional lateral heterojunctions made of hexagonal boron nitride and carbon materials as efficient electrocatalysts for chlorine evolution reaction: A study of DFT and machine learning

Jiake Fan, Lei Yang, Weihua Zhu*

Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

^{*} Corresponding author. E-mail: zhuwh@njust.edu.cn

Hyperparameters	Search space	Optimal hyperparameters
n_estimators	(50,1000, step=50)	450
max_depth	(2, 18, step=2)	8

Table S1. The hyperparameters search space and the optimal hyperparameters of RFR

Table S2. The hyperparameters search space and the optimal hyperparameters of XGBR

Hyperparameters	Search space	Optimal hyperparameters
n_estimators	(40, 100, step=10)	100
max_depth	(3, 15, step=1)	13
min_child_weight	(5, 10, step=1)	5
colsample_bytree	(0.4, 1, step=0.1)	0.9
subsample	(0.4, 1, step=0.1)	0.9
reg_alpha	(0.1, 0.5, step=0.1)	0.1
reg_lambda	(0.5, 0.9, step=0.1)	0.7
gamma	(0, 1, step=1)	0

Table S3. The interaction energy between graphene and h-BN in lateral heterojunctions

		The energy of h-	The energy of	Interaction
Dimensional	Total energy/eV	BN/eV	graphene/eV	energy/eV
2	-33918.71665	-17317.97715	-16558.84154	-41.898
1	-63594.75111	-32492.86308	-31069.31618	-32.5719
0	-63479.5114	-30283.07519	-33098.76588	-97.6703

Table S4. Three groups of features

Group name	Features
Dimension	B fraction,

	C fraction,
	N fraction,
	sine coulomb matrix eig 4,
	sine coulomb matrix eig 5,
	sine coulomb matrix eig 7,
	sine coulomb matrix eig 8,
	sine coulomb matrix eig 9,
	sine coulomb matrix eig 10,
	sine coulomb matrix eig 11,
	sine coulomb matrix eig 12,
	sine coulomb matrix eig 13,
	sine coulomb matrix eig 14,
	sine coulomb matrix eig 15,
	sine coulomb matrix eig 18,
	sine coulomb matrix eig 19,
	sine coulomb matrix eig 20,
	sine coulomb matrix eig 21,
	sine coulomb matrix eig 22,
	sine coulomb matrix eig 23,
	sine coulomb matrix eig 24,
	sine coulomb matrix eig 25,
	Dimensions
Cl Concentration	Cl fraction,
	mean AtomicWeight,
	mean Column,
	mean Row,

	1
	mean Number,
	mean AtomicRadius,
	mean Electronegativity,
	avg p valence electrons,
	frac s valence electrons,
	frac p valence electrons,
	sine coulomb matrix eig 0,
	sine coulomb matrix eig 1,
	sine coulomb matrix eig 2,
	sine coulomb matrix eig 3,
	sine coulomb matrix eig 6,
	sine coulomb matrix eig 32
	sine coulomb matrix eig 29
	sine coulomb matrix eig 30
	sine coulomb matrix eig 17
	sine coulomb matrix eig 45
	sine coulomb matrix eig 26
	sine coulomb matrix eig 27
	sine coulomb matrix eig 43
Other	sine coulomb matrix eig 40
	sine coulomb matrix eig 38
	sine coulomb matrix eig 58
	sine coulomb matrix eig 55
	sine coulomb matrix eig 44
	sine coulomb matrix eig 39
	sine coulomb matrix eig 46
	sine coulomb matrix eig 37

sine coulomb matrix eig 58
sine coulomb matrix eig 34
sine coulomb matrix eig 54
sine coulomb matrix eig 35
sine coulomb matrix eig 48
sine coulomb matrix eig 57
sine coulomb matrix eig 49
sine coulomb matrix eig 47
sine coulomb matrix eig 59
sine coulomb matrix eig 56
sine coulomb matrix eig 31
sine coulomb matrix eig 52
sine coulomb matrix eig 36
sine coulomb matrix eig 55
sine coulomb matrix eig 51
sine coulomb matrix eig 41
sine coulomb matrix eig 60
sine coulomb matrix eig 16
sine coulomb matrix eig 33
sine coulomb matrix eig 50
sine coulomb matrix eig 42
sine coulomb matrix eig 28
sine coulomb matrix eig 61
sine coulomb matrix eig 62

Figure S1. The Potential energy, temperature profiles and corresponding snapshots of G1 (a)

and G2 (b) based on AIMD

Figure S2. Length of d_{B-Cl} and binding energy of Cl⁻ adsorbed on G1 (a) and G2 (b), and electron localization function of G1 (c) and G2 (d).

Figure S3. Electron localization function of G1 (a) and Hirshfeld charges of the atoms at the G1 interface before (b) and after (c) Cl⁻ adsorption. Electron localization function of G2 (d) and Hirshfeld charges of the atoms at the G2 interface before (e) and after (f) Cl⁻ adsorption.

(a)

(b)

Figure S4. The heatmap of Pearson correlation coefficient and corresponding p-value between 77 features (the "x" in the grid indicates that there is no-significant-difference between two features; the larger the diameter of the circle and the darker the color, the greater the correlation between the two features) (a). The partial enlargement of the 77 feature labels(b).

Figure S5. The SHAP feature importance calculated by the algorithm of RFR

Figure S6. The $c_{Cl}\xspace$'s contribution to the ΔG_{CER} under the algorithm of RFR

Figure S7. The contribution of heterojunction dimensions to the ΔG_{CER} under the algorithm of RFR

Figure S8. The SHAP feature importance under the algorithm XGBR

Figure S9. The $c_{Cl}\xspace$'s contribution to the ΔG_{CER} under the algorithm of XGBR

Figure S10. The contribution of heterojunction dimensions to the ΔG_{CER} under the algorithm of XGBR

Figure S11. Partial density of states and projected crystal orbital Hamilton population (pCOHP) of the adsorption sites and Cl atoms under different surface coverage concentrations of Cl⁻ (c_{Cl}) and different heterojunction's dimensions (D) ((a) D=2, c_{Cl}=1; (b) D=2, c_{Cl}=2; (c) D=2, c_{Cl}=3; (d) D=1, c_{Cl}=1; (e) D=1, c_{Cl}=2; (f) D=1, c_{Cl}=3; (g) D=0, c_{Cl}=1; (h) D=0, c_{Cl}=2; (i) D=0, c_{Cl}=3).

Figure S12. Gibbs free energy diagram of CER on the D_0 _Cl5_C1_C2 (a) and OER on D_0 _Cl5_C1_C2 (b) systems. Energy and temperature diagram (c) and root-mean-square deviation (RMSD) for zero-dimensional heterojunction in water and snapshots from molecular dynamics simulations (d).