Supporting Information

The cobalt-based current collectors for flexible electrodes and its application in lithium-sulfur battery

Fig. S1 Optical images of (up) PE and (bottom) PE-Co.

Fig. S2 The schematic diagram of electroless deposition.

Fig. S3 The XRD spectrum of PE, PE-Co and PVDF-HFP membrane.

Fig. S4 (a) Nitrogen adsorption–desorption isotherms and (b) pore size distribution curves of PE and PE-Co composites.

Fig. S5 (a) Cross-section morphology of PE-Co and its elemental mapping of (b) carbon, (c) oxygen, (d) cobalt, (e) fluorine and (f) sulfur.

Fig. S6 CV curves of batteries assembled with (a) PE and (b) PE-Co of 6 cycles at a scanning rate of 0.1 mV s^{-1} in the range of 1.75-2.8 V.

Fig. S7 Relationship between Z' and square root of frequency ($\omega^{-1/2}$) in the low-frequency region.

Fig. S8 Charge/discharge curves of batteries assembled with PE at various C-rate from 0.1 to 1 C.

Fig. S9 Cycling performance of batteries assembled with PE and PE-Co at 1.2 mA.

Fig. S10 (a) Schematic of discharge curve diagram. (b) Photos of polysulfide entrapment of PE (up) and PE-Co (down) cathodes at different discharge states of 1 to 5 from (a).

Fig. S11 (a) Surface and (b) cross-section morphology of PE after cycling and its elemental mapping of (c) carbon, (d) sulfur, (e) oxygen, and (f) fluorine.

sample	BET Surface Area	Total Volume in Pores	
	(m² g ⁻¹)	(cm ³ g ⁻¹)	
PE	147.90	0.56	
PE-Co	181.05	0.58	

Table S1 The definite quantitative porous structures of PE and PE-Co.

 Table S2 Kinetic parameters of PE and PE-Co.

Kinetic	R_s	R_{ct}	σ	D	
parameters					
PE	2.6	421.1	5.76	1.09×10 ⁻¹⁰	
PE-Co	2.5	65.2	2.75	4.74×10 ⁻¹⁰	

Table S3 Statistical information of publications about flexible electrodes with high sulfur loading in Li-S battery systems.

Sulfur hosts PE-Co	Sulfur loading (mg cm ⁻²) 2.5 8	Capacity at last cycle (mAh g ⁻¹) 624 639	Current density 0.2C 0.1C	Cycling number 300 200	Capacity retention (%) 55.6% 56.1%	Ref This work
PPy@rGO/CNTs	2.8 4.5 5.4	757.9 489.5 390.2	0.2C 0.2C 0.2C	100 100 50	87.06 83.24 80	1
PEDOT: PSS	6.1	559	2C	500	71.5	2
VIPIE(S/C+PVDF)	10	917.88	0.1C	60	90.7	3
PES/CNT	4.8 5.9 7	653 539 507	0.25C	50		4
PAN/TiO _{2-x}	2.3 4.3 5.31	921.9 699.4 670	0.5C	100		5
Ti₃C₂Tx-CNT@PAN	4.5	747.8	0.2C	100	83.68	6
Fe ₃ C/C	1.6 3.4	742.5 656.8	0.5C	100 100		. 7
S@Co _x P/NC	3.15	615.6	0.5C	300		
	3.92	519.4	0.5C	300		8
	4.68	368.8	0.5C	300		
	6.2	570	0.1C	100	59.50%	
Fe-N-GOMC/S	3	920.6	0.5C	500		9
	6	715	1C	120		
MoSe _{2-x} @GA/S	4.8	503.2	1C	1000	70%	10

References

- 1. L. Bao, J. Yao, S. Zhao, Y. Lu, Y. Su, L. Chen, C. Zhao and F. Wu, *ACS Sustainable Chemistry & Engineering*, 2020, **8**, 5648-5661.
- 2. S. Zeng, X. Li, F. Guo, H. Zhong and Y. Mai, *Electrochimica Acta*, 2019, **320**, 134571.
- 3. Y. Yu, H. Zhang, X. Yang, Y. Chen, Z. Jia, J. Yan, H. Zhang and X. Li, *Journal of Materials Chemistry A*, 2018, **6**, 24066.
- 4. W. Wahyudi, Z. Cao, P. Kumar, M. Li, Y. Wu, M. N. Hedhili, T. D. Anthopoulos, L. Cavallo, L.-J. Li and J. Ming, *Advanced Functional Materials*, 2018, 1802244.
- 5. S.-Y. Qiu, C. Wang, L.-L. Gu, K.-X. Wang, X.-T. Gao, J. Gao, Z. Jiang, J. Gu and X.-D. Zhu, *Dalton Transactions*, 2022, **51**, 2855-2862.
- 6. S. Gu, H. Jiang, X. Li, Y. Dai, W. Zheng, X. Jiang and G. He, *Energy Storage Materials*,

2022, **53**, 32-41.

- 7. W. Kou, G. Chen, Y. Liu, W. Guan, X. Li, N. Zhang and G. He, *Journal of Materials Chemistry A*, 2019, **7**, 20614-20623.
- 8. J. Luo, Y. Wang, Y. Mao, Y. Zhang, Y. Su, B. Zou, S. Chen, Q. Deng, Z. Zeng, J. Wang and S. Deng, *Chemical Engineering Journal*, 2022, **433**, 133549.
- 9. H. Li, D. Liu, X. Zhu, D. Qu, Z. Xie, J. Li, H. Tang, D. Zheng and D. Qu, *Nano Energy*, 2020, **73**, 104763.
- 10. S. Zhai, Z. Ye, R. Liu, H. Xu, C. Li, W. Liu, X. Wang and T. Mei, *Advanced Functional Materials*, 2023, 2314379.