Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

In situ confined synthesis of interlayer-riveted carbon shell

encapsulated PdZnBi alloy as highly active and durable oxygen

reduction reaction catalyst

LiYuan Chang^a, KaiLing Zhou^a, WeiHan Si^a, Chao Wang^a, ChangHao Wang^{*a}, ManChen Zhang^b, XiaoXing Ke^b, Ge Chen^{*c} and RuZhi Wang^{*a}

Email address: wrz@bjut.edu.cn; chenge@bjut.edu.cn; wangch33@bjut.edu.cn

Fig. S1. XRD spectra of synthetic ZIF-8

^{*} Corresponding author. Email address: wrz@bjut.edu.cn; chenge@bjut.edu.cn; wangch33@bjut.edu.cn

Fig. S2. TEM images of PdZnBi/NC-SL at different magnification

Fig. S3. PdZnBi/NC-IR TEM images with different magnifications

Fig. S4. (a~c) TEM images of PdZn/NC-IR at different magnification; (d) HAADF-STEM image of PdZn/NC-IR; (e~h) Elemental mappings of PdZn/NC-IR; (i) Line

scan corresponding to the red arrow in Fig. (d).

Fig. S5. Particle size distribution of PdZn/NC-IR;

Fig. S6. XRD pattern of PdZnBi/NC-SL, PdZn/NC-IR and PdZnBi/NC-IR and Local

Fig. S7. Raman curve of PdZnBi/NC-IR and PdZnBi/NC-SL

Fig. S8. N₂ adsorption-desorption isotherms of PdZnBi/NC-IR, the inset showing the

corresponding pore size distribution

Fig. S9. XPS spectra of PdZn/NC-IR and PdZnBi/NC-IR. (a) Full survey spectra and deconvoluted (b) Pd 3d (c) N 1s, (d) C 1s, (e) Zn 2p and (f) Bi 4f spectra.

Fig. S10. PdZn alloy synthesized by sodium acetate as an additive.

Fig. S11. PdZn alloy synthesized by glucose as an additive.

Fig. S12. (a) PdZn (111) and (b) PdZnBi (111). The red sphere represents the Pd atom,

the blue sphere represents the Zn atom, and the purple sphere represents the Bi atomic

Fig. S13. Free energy diagrams of ORR on PdZn/NC-IR and PdZnBi/NC-IR at 0 V.

Fig. S14. XPS spectra of PdZnBi/NC-IR catalyst before and after stability test: (a) Pd

3d, (b) Zn 2p

Elemental	Values (ppm)
Pd	5.068
Zn	5.591
Bi	0.634

Table S2. Elemental content in PdZn/NC-IR

Elemental	Values (ppm)
Pd	5.235
Zn	5.712

Elemental	Values (ppm)
Pd	5.149
Zn	5.683
Bi	0.705

Table S3. Elemental content in PdZnBi/NC-SL

Table S4. Performance of samples

samples	E _{1/2} (V)	MA (A mg ⁻²)	SA (mA cm ⁻²)
Pt/C	0.862	0.087	0.13
Pd/C	0.813	0.07	0.34
PdZnBi/NC-SL	0.808	0.10	0.14
PdZn/NC-IR	0.883	0.78	0.71
PdZnBi/NC-IR	0.892	1.05	0.73

Table S5. Bard charge of four atoms around Bi in PdZnBi/NC-IR

Atom	Charge (e)	Transferred charge (e)
Bi	4.6588	-0.3412
1-Pd	10. 4170	+0. 4170
2-Pd	10. 4170	+0. 4170
3-Pd	10. 4012	+0. 4012
4-Pd	10. 4012	+0. 4012

Catalyst	Number of	Mass activity retention rate	Ref.
	cycles (k)	(%)	
Pd/p-BNO	5	93.9	[48]
Pd ₃ Bi	10	71	[14]
Pt/TiO ₂ -C	10	71.2	[49]
Pd ₅ Bi ₂ /C	10	74	[50]
FePt@PtBi	10	82	[51]
PtCo/C	10	87	[52]
Pd-N-C	10	90	[53]
Pd ₁₇ Se ₁₅ NPs/C	15	55.5	[54]
Pd ₅₉ Cu ₃₀ Co ₁₁	15	68.4	[55]
Pd/NRGO	15	72	[56]
Pt ₃ Co _{0.6} Ti _{0.4} /DMC	15	78.5	[57]
HD-PdZn	20	79.9	[58]
PtCuAu _{0.0005} /C	20	83	[59]
PdMo bimetallene	30	72	[13]
PtCo-PtSn/C	30	72.6	[60]
Au-O-PdZn	30	90.5	[17]
nt-PtNiN/KB	30	72.7	[61]
Pt ₇₈ Zn ₂₂	30	85	[62]
Pt ₂ CuW _{0.25} /C	30	90.9	[63]
Pt ₃ Co@Pt-SAC	50	90	[64]
This work	60	84	-

Table S6. Comparison of stability