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Table S1. The IDs of the 3D printed microsupercapacitors and their related geometrical feature dimensions

Active Area’s Lateral
o | e | et | oot | amensors (el <y | A
(mm x mm)
XS1 0.35 2.5 0.75 1.45x2.5 0.04375
XS2 0.35 3.75 0.75 1.45x3.75 0.065625
XS3 0.35 5 0.75 1.45x 5 0.0875
s1 0.5 2.5 0.75 1.75x 2.5 0.04375
S2 0.5 3.75 0.75 1.75x 3.75 0.065625
S3 0.5 5 0.75 1.75x5 0.0875
M1 0.75 2.5 0.75 2.25x2.5 0.05625
M2 0.75 3.75 0.75 2.25x3.75 0.084375
M3 0.75 5 0.75 2.25x5 0.1125
L1 1 25 0.75 2.75x2.5 0.06875
L2 1 3.75 0.75 2.75 % 3.75 0.103125
L3 1 5 0.75 2.75x5 0.1375

*calculations of the active area is based on the rectangular area (i.e., the dashed yellow rectangles as
shown in Figures S1-512) surrounding the current collector fingers which is theoretically the maximum

area that the electrodes can take up after printing.

Figure S1. The geometrical details of the design of the current collectors of the MSC with the sample ID XS1.



Figure S2. The geometrical details of the design of the current collectors of the MSC with the sample ID XS2.
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Figure S3. The geometrical details of the design of the current collectors of the MSC with the sample ID XS3.
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Figure S4. The geometrical details of the design of the current collectors of the MSC with the sample ID S1.
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Figure S5. The geometrical details of the design of the current collectors of the MSC with the sample ID S2.

Figure S6. The geometrical details of the design of the current collectors of the MSC with the sample ID S3.




Figure S8. The geometrical details of the design of the current collectors of the MSC with the sample ID M2.

Figure S9. The geometrical details of the design of the current collectors of the MSC with the sample ID M3.
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Figure S10. The geometrical details of the design of the current collectors of the MSC with the sample ID L1.

Figure S11. The geometrical details of the design of the current collectors of the MSC with the sample ID L2.
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Figure S12. The geometrical details of the design of the current collectors of the MSC with the sample ID L3.



Electrochemical performance calculations

The areal and volumetric capacitances, the energy density and the power density of the fully

3D printed MSCs were calculated based on the equations below using the CV curves(!:
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Where Cp (mF/cm?) is the areal capacitance of the device, A (cm?) is the active area of the
MSC, Epis the areal energy density (WWh/cm?), P, is the areal power density (WW/cm?), j is the
current (mA), AV is the voltage window (0.6 V), his the height of the electrodes, and v is the

scan rate (mV/s).

We also used GCD curves to calculate the areal and volumetric capcitances of the MSCs using

the equations below!!:
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Where Cagep) (MF/cm?) is the areal capacitance of the device, A (cm?) is the active area of the
MmscC, Atis discharging time, his the height of the electrodes and Ay is potential change during

the discharge.

Kinetic study of charge storage mechanisms

We calculated the ratio of (EDLC + Faradaic pseudocapacitance) (fast kinetic)/diffusive ion
insertion (diffusive pseudocapcitance) (slow kinetic) charge storage contributions of the MSCs
comprising 3.75 mm electrodes printed with the smallest nozzle (i.e., 250 um) and the largest
nozzle (i.e., 840 um) as a function of the sweep rates (u) using the CV measurements according
to a method introduced by Trasatti.3! These calculations differentiate the fast-kinetic charge
storage (EDLC + Faradaic pseudocapacitance—outer surface) and the slow-kinetic charge
storage (diffusive ion insertion—diffusive pseudocapacitance—inner surface) mechanisms.
The value of the fast-kinetic (outer surface) areal capacitance (C,), is obtained from the
extrapolation of areal capacitance (C,) to u=c= derived from the plot of areal capacitance (Ca)
vs. U2, And, the value of the total areal capacitance (C,); is obtained from the extrapolation
of inverse of areal capacitance (C,)! to u=0 from the plot of inverse of areal capacitance (Ca)™
vs. u%>, By calculating the Cy and C;, one can calculate the C; (inner surface capacitance—

diffusive ion insertion—diffusive pseudocapacitance) using equation S4.

(Ca) = (Ca)i* (Ca)o (54)

Where (C,); is the total areal capacitance (mF.cm2), (C,); is the inner surface areal capacitance
stemming from the slow-kinetic charge storage (diffusive ion insertion—diffusive
pseudocapacitance—inner surface) (mF.cm=), and (Cp)o is the outer surface areal capacitance
caused by the fast-kinetic charge storage (EDLC + Faradaic pseudocapacitance—outer surface)
(mF.cm™2). We used the intercepts of the Y axes in these plots using the values shown in their

legends to calculate (Ca)™* and (Ca).
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Figure S13. The plots of A) C, vs. u™> and B) Cotvs. u%> of the MSC constructed by the electrode with the length

of 3.75 mm, which is printed with a nozzle of diameter 250 um.
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Figure S14. The plots of A) C, vs. U3 and B) Cytvs. u%> of the MSC constructed by the electrode with the length

of 3.75 mm, which is printed with a nozzle of diameter 840 um.
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Figure S15. TGA and DSC curves of the silver paste used for 3D printing of the current collector.

04
204
S
% -40-
o
=
2
o 60 4
= 60
-80 -
| —— EOGO powder
Electrode active material
-100

0 100 200 300 400 500 600 700

Temperature (°C)

Figure S16. Thermogravimetric analysis (TGA) plots of all the electrode active materials.
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Figure S17. Sheet resistance of the silver paste used for the current collector fabrication as a function of heat
treatment temperature and duration in air.



We also performed XPS spectroscopy to elucidate the presence of different oxidation states
of cerium (i.e., Ce(lll) and Ce(lV)) in the electrode active material.
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Fig. S18. Deconvoluted Ce 3d region of XPS spectrum of the electrode active material.

Table S2. Assignment of Ce oxidation state associated with deconvoluted peaks in the Ce 3d region of XPS
spectrum of the electrode active material.

Deconvoluted peak binding energy (e.V.) Oxidation state of Ce associated with the
deconvoluted peak
880.45-880.77 Ce(lll)
882.28-882.3 Ce(lV)
884.24-885.1 Ce(lll)
888.29-888.58 Ce(lV)
898.05-898.9 Ce(IV)
898.9-899.22 Ce(lll)
900.73-900.75 Ce(IV)
902.69-903.55 Ce(lll)
906.74-907.03 Ce(IV)
916.5-916.62 Ce(IV)
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Figure S19. Oxidation states of Cerium in the electrode active material that is a nanocomposite of EOGO (~95
wt.%)/cerium oxide NPs (~5 wt.%).



5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

CeO2 PDF 225 e e ] M7 2 | o)
- Code: 00-057-0401

s Graphite PDF
- Code: 00-056-0159

—— 5 wt.% ceria/ 95 wt.% EOGO]

Intensity (a. u.)

bare EOGO

fe e e e p e |l | = shees ] ERTRRITE S S B e e R s | SRR R ]
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
2 Theta (Degrees)

Figure S20. XRD plots of the bare EOGO powder and the electrode active material (i.e., nanocomposite based on
EOGO (95 wt.%)/cerium oxide NPs (5 wt.%) nanocomposites and PDF files of graphite and CeO, showing their
corresponding characteristic peaks.
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Figure S21. N, adsorption isotherm of the electrode active material.
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Figure S22. Areal and volumetric capacitances as a function of current using the GCD measurements of the MSCS
(IDs: XS2 and L2) with a nozzle diameter of A) 250 um, and B) 840 pum.
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We also performed EIS measurements to extract the equivalent circuit of the MSC cycled for
17000 cycles and its corresponding values, i.e., Rq is the ESR, (R;— R, = R (i.e., charge

transfer resistance)).
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Figure S23. EIS plot, equivalent circuit, and corresponding values of this circuit of an MSC comprising an electrode
of 3.75 mm long electrode printed with the nozzle of 840 um.
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