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Figure S1. (a) N, absorption/desorption isotherms for the pristine microporous carbon (MP) and the
one immersed in 1M im solution (MP/Im) at pH ~ 7. (b) N absorption isotherms for MP, MP/Im acidic
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Figure S2. XRD of (a) the microporous carbon and (b) the microporous carbon immersed in the 1 M

Im solution at pH ~ 7.
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Figure S3. XRD of the microporous carbon immersed in the 1 M Im solution at pH ~ 7 (green) and

after annealing at 300 °C (black).
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Figure S7. Successive CVs (1, 3, 5, and 10" cycle) at 5 mV/s measured in the compact-cell configured

as MPE (CE)|5 mM H2Q + 1 M Im, pH ~ 7||the same electrolyte condition as the other side]MPE (WE).
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Figure S8. Integrated voltammetric areas to estimate charges for H.Q oxidation to Q and vice versa at
(a) 1 and (b) 100™ cycle. Both anodic and cathodic peak areas from 1 and 100" cycle CVs were
estimated to be 90.5 and 87.0 C/g, respectively; the volume of the electrolyte in the compact cell was
240 uL, and the theoretical charge for the complete electrolysis of H,Q and vice versa was 95.8 C/g.
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Figure S9. (black) Forward scanned voltammogram for electrolytic oxidation of H>Q from the (a) 1%
and (b) 11™ CV cycle. After that, each the compact-cell was dissembled, and MPE was rinsed with
deionized water and immersed in the 1 M Im solution without H,Q for 1 hour. Negatively swept

voltammogram for reduction of (a, blue) residual Q and (b, orange) Quinoneox,confinea in the MPE.

S-14



a
0 min
b

0 min 3 min 10 min 20 min

Figure S10. Snapshots for the transiently observed color change of the 5 mM Q solutions (a) without
and (b) with 1 M Im for 20 minutes.
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Note S1. Voltammetric estimation for the reaction order of Q in its homogenous reaction with Im.

Figure S13a—c shows the successive CVs on a Pt ultramicroelectrode (UME) with its radius,
a =5 pm measured in aqueous solutions with Q at different concentrations (2.5, 5 and 10 mM) after the
injection of Im to 1 M. It was clearly shown that the cathodic limiting current (i;m.c) by electro-reduction
of Q decreased, while the anodic one by electro-oxidation of H>Q increased. ijim . under the diffusion on

an UME is defined as follows:?
iiime = 4nFCo*Doa (S1)

Here, n = 2 is the ¢ number for the electro-reduction of Q, £ is the Faraday constant, and Cp* and Dy
are the bulk concentration and the diffusion coefficient of Q, respectively. From the measured i . over
time, the Cp*-¢ profiles with different initial concentration values were measured, as shown in Figure
1h. Because the concentration of Im was more than two orders of magnitude higher than that of Q, the
chemical reaction between Q and Im was considered a pseudo-first-order reaction, the rate of which is

expressed as follows:
Rate = k’[Q] (S2)

The initial rates of the chemical reaction at different concentrations of Q were estimated from the slopes
of the Cp*-t profiles from 0 to 40 s, which are listed in Table S2. The reaction order of Q was estimated
to be 1 based on the measured initial reaction rates, and the corresponding average pseudo-first order

rate constant (k') was estimated to be 5.18 X 107 s™'. The calculated lifetime of Q (1/k’) was 193 s.
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Figure S13. Successive CVs at 50 mV/s for 30 cycles over 20 minutes on a Pt UME with a radius of 5
pum in a solution, containing 1 M Im with (a) 2.5, (b) 5 and (c) 10 mM Q at pH ~ 7. The CVs were
measured immediately after the injection of Im into the Q solutions, started at potential of 0.05 V and
followed a negative sweep to -0.4 V, then a potential sweep to 0.5 V, and back to 0.05 V. In the process

of sweeping the potential, the reduction current gradually decreases, and the oxidation current gradually

Increases.
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Figure S14. Successive CVs on the modified glassy carbon macrodisk electrode coated with a quinone-

Im complex measured in a solution containing 1 M Im.
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Figure S15. The 10™ cycle CVs associated with H2Q/Q redox reaction on (black) MPE and (red) ordered

mesoporous carbon electrode in an aqueous solution containing 5 mM H,Q + 1 M Im.
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Figure S16. The structure of quinone-Im complex for AG3 in DFT calculation.
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Figure S17. The successive CVs (1* and 8™ cycle) at 0.1 mV/s measured from MPE (CE)|5 mM H,Q
+ 1 M citrate, pH ~ 7|/the same component as the other side]MPE (WE).
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Figure S18. The 1* and 10™ cycle CVs at 5 mV/s measured in the Im + citrate buffer solutions
containing 5 mM HxQ, pH ~ 7 with different fim : fcs = (a) 1 : 0, (b) 0.8 : 0.2, (¢) 0.5 : 0.5, and (d) 0.2 :
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Figure S19. Successive CVs at SmV/s measured in the 2 M Im solutions containing 10 mM H>Q on
MPE.
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Figure S20. TGA results (a) from a pristine microporous carbon (MP) and the ones immersed in the 1
M Im solution at pH ~ 1 (acidic), 7 (neutral), and 13 (alkaline), (b) the one immersed in an acidic

solution containing only H>SOs.
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Figure S21. (a) CV measurements on a pyrolytic graphite sheet electrode in the solution, containing 5
mM H,Q + 1 M Im, pH ~ 7, and (b) the one after the 100" cycle of charge-discharge process. The

scan rate of all CVs was 5 mV/s.
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Figure S22. The 1% cycle charge and discharge curve from the cell (purple), positive (green), and
negative (red) electrodes, respectively measured in (—)MPE|5 mM H>Q + 1 M Im, pH ~ 7|lusing the

same component as the negative electrode side]MPE(+) at 0.3A/g.
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Figure S23. First cycle of charge-discharge characteristic measured in the compact-cell configured as
(-) MPE|5 mM H>Q + 1 M Im|jusing the same component as the other side|ordered mesoporous carbon
electrode (+) at 0.5A/g.
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Table S1. The volume of the adsorbed N, at monolayer (Vi), BET surface area (asger), BET constant
(C), total pore volume (Vioal porc), mesopore volume (Vimeso pore), micropore volume (Vmicro porc), average
pore diameter (Daverage porc), Median pore diameter (Pmedian pore) from non-porous graphite, microporous,
ordered mesoporous carbon and the microporous ones immersed in 1 M Im solutions at pH ~ 1 (acidic),

7 (neutral), and 13 (alkaline).

Sampls Vl;n as,ZBET C Vtotal3 pore Vmesg pore Vmicr? pore (average pore Pmedian pore
[cm®/g] [m/g] [em®/g] [em®/g] [em®/g] [nm] [nm]
Graphite 1.7355 7.5538 176.4  0.0485  0.0481 0.0004 25.689 0.7
Mii;"r’l’o‘;::’“s 54318 2364.2 41279  1.0383 0.4257 0.6126 1.5938 0.7512
g;f:;idc’;ii‘; 22282 969.83 229.78  0.9203  0.8018  0.1185 3.8 3.7955
Acidic pH 42814 1863.5 307.34 0.8195  0.3622  0.4573 1.62 0.7634
Neutral pH 251.3  1093.8 178.01 0.4981  0.2816  0.2165 1.7995 0.8093
Alkaline pH  276.29 1202.5 237.26 05461  0.2839  0.2622 1.7332 0.7916
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Table S2. The initial rates of the chemical reaction between Q and Im at different concentrations of Q

estimated from the slopes of the Cp*-t profiles (Figure 1h) from 0 to 40 s, and the corresponding pseudo-
first-order rate constant.

No. [Q] (M) % (mM/s) Initial rate (M/s) Rate constantk’ (s™)
1 0.01 W 54.5 x 10¢ 5.45 x 103

2 0.005 % 25.0 x 10 5.0 x 103

3 0.0025 % 12.75% 10% 5.1x 103
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Table S3. The system components of MD simulation: the CNT diameter, the numbers associated with

each molecule. The number of molecules was adjusted to keep the density the same.

System Diameter [nm] H2Q Q Im H.O
H2Q CNT 1.221 8 - 17 92
H2Q CNT 2.032 32 - 64 356
H2Q CNT 2.980 79 - 159 881

QCNT 1.221 - 8 16 91

QCNT 2.032 - 32 64 354

QCNT 2.980 - 79 158 876
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Table S4. DFT calculations to estimate the Gibbs free energy changes for stabilization of Q (AG1) and

Im (AG») by interaction with carbon surface, which are compared to that for formation of Q-2Im

complex (AG?3).
No. Reactions Gibbs free energy change, AG (eV)
1 Adsorption of one Q on carbon -0.55
2 Adsorption of one Im on carbon -0.36
3 Formation of Q-2lm complex -0.33
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