SUPPLEMENTAL INFORMATION

1. Flux calculations

The Ga and In beam equivalent pressures are converted into particle fluxes Φ_{Me} (cm⁻²s⁻¹) in Fig. 4b-d according to kinetic gas theory:⁵⁸

$$\Phi_{Me}^{BEP} = C \frac{\rho_{Me}}{\sqrt{2\pi m_{Me} k_B T}},$$

$$\Phi_{Me} = I_{Me} \Phi_{Me}^{BEP},$$
(10)

Where m_{Me} is the atomic mass, T is the effusion cell temperature, C = 0.013332 cm⁻²s⁻¹ is a prefactor to convert Φ_{Me}^{BEP} from torr to particle flux, and I_{Me} is an effective factor determined from metal-limited sensitivity calibration growth. The Ga sensitivity factor I_{Ga} was determined from homoepitaxial growth of Ga₂O₃ with a typical growth rate of 3.16 nm/min, and the In sensitivity factor I_{In} was estimated as $I_{In} = I_{Ga}(5.2/9.1)$ in accordance with the experimentally obtained factors reported in Ref. 60. The oxygen beam equivalent pressure $\Phi_{0}^{BEP} = 3.2 \times 10^{15} \text{ cm}^{-2} \text{s}^{-1} \text{ at } 3.00 \text{ SCCM and } 250 \text{ W was}$ calculated from the growth rate of slightly metal-rich homoepitaxial Ga₂O₃ growth at 650 °C. The effective oxygen flux $\Phi^{*,Me}_{0}$ available for Ga₂O₃ and In₂O₃ growth varies for each metal species due to the differing oxidation efficiencies^{34,54,58} and is given by:

$$\Phi^{*,Me}_{\ 0} = J^{Me}_{\ 0} \Phi^{BEP}_{\ 0}.$$
 (11)

In the presence of both Ga and In flux, the total effective oxygen flux Φ_0^* is modified by the metal flux ratio $R = \Phi_{In}/(\Phi_{Ga} + \Phi_{In})$. with⁵⁸

$$\Phi_0^* = \Phi_0^{BEP} \left(R J_0^{ln} + (1 - R) J_0^{Ga} \right).$$
(12)

The total metal/oxygen flux ratio is thus $(\Phi_{Ga} + \Phi_{In})/\Phi_0^*$ and the stoichiometric flux ratio shown in Fig. 4d is $\frac{3}{2}(\Phi_{Ga} + \Phi_{In})/\Phi_0^*$ The flux calibration parameters are

 $\overline{2}^{(\Phi_{Ga} + \Phi_{In})/\Phi_{O}}$. The flux calibration parameters are summarized in Table I.

TABLE I. Flux calibration parameters for Ga and In.

Metal	Ga	In
Atomic mass, m_{Me} (amu)	69.723	114.818
Sensitivity factor, I_{Me}	10.60	6.06
Oxidation efficiency, J_0^{Me}	0.096	0.263

2. X-ray diffraction of phase separated growth

Fig. 7 shows a coupled ω -2 θ x-ray diffraction scan for a targeted growth performed at 740 °C with relatively high In and Ga fluxes of 3×10-7 torr each. The dashed lines indicate the locations of the β -Ga₂O₃ (020) reflection at ω = 30.481° and the bixbyite In₂O₃ (444) reflection at ω = 31.824° . The presence of the measured bixbyite In₂O₃ (444) peak reflects the terminal RHEED pattern which developed into a spotty/faceted pattern typical of Fig. 3b, confirming that this pattern is due to the formation of In_2O_3 on the surface. No compressive features are observed at diffraction angles below the β -Ga₂O₃ (020) peak, confirming that In does not incorporate at these high metal flux growth conditions. RBS measurements for this sample (not shown) confirm the presence of a thin In-rich layer at the surface. Reaction equations (4) through (8) suggest that In₂O₃ formation is suppressed at these metal rich conditions due to a combination of In₂O formation and Ga cation exchange followed by Ga₂O decomposition. The presence of a thin In₂O₃ layer suggests that complete decomposition of In₂O₃ does not occur. The accumulation of In₂O₃ is very small, however, on the order of several nanometers over the course of a 1 hour growth.

FIG. 7. Coupled ω -2 θ x-ray diffraction (XRD) scan of targeted growth with spotty/faceted surface reconstruction. Growth conditions labeled directly on figure. The peak at $\omega = 31.824^{\circ}$ is attributed to the (444) reflection from bixbyite In₂O₃, responsible for the spotty/faceted RHEED pattern.

3. Orientation of bixbyite In_2O_3 on (010) β -Ga₂O₃

Fig. 8 shows the possible orientation of bixbyite In_2O_3 on (010) oriented β -Ga₂O₃. The In_2O_3 [111] direction is parallel to the Ga₂O₃ [010] direction and is perpendicular to the growth plane of the substrate. The In_2O_3 [011] direction is perpendicular to the Ga₂O₃ [001] direction. This orientation is responsible for the bixbyite In_2O_3 (444) peak observed in the coupled ω -20 XRD scan shown in Fig. 7 for the phase separated growth, and for the ~7.1 Å spot spacing observed in the RHEED pattern shown in Fig. 3b corresponding to diffraction from the In_2O_3 (110) plane.

FIG. 8. Possible orientation of bixbyite In_2O_3 on (010) oriented β -Ga₂O₃.