Supporting Information

Synthesis of non-noble metal solid solution(Cd_{0.76}Co_{0.17}Mo_{0.07}S) via

MOF precursors for enhanced hydrogen production

Experimental section

Preparation of Mo-MOF

Mo-MOF was prepared by modifying the method reported by Martin^[1]. 1.4 g of molybdenum trioxide and 0.664 g of imidazole were dissolved in 100 ml of aqueous solution and refluxed at 80 °C for 12 h. The product was collected and centrifuged, the product was washed twice with aqueous solution and finally dried in a vacuum drying oven at 60 °C for 12 h to obtain a white powder.

Preparation of CdIF-3\ZIF-67

The preparation of CdIF-3 was referred to the work of Zhong *et al*^[2] with modifications: 0.7712 g of cadmium nitrate tetrahydrate and 1.642 g of 2-methylimidazole were mixed with 2.8 ml of triethylamine solution and 57 ml of methanol. After sonication for 10 minutes it was poured into an autoclave and reacted at 60 °C for 48 h. The precipitate was collected by centrifugation, washed with methanol, and dried in an oven at 60 °C for 12 h to obtain a white powder. ZIF-67 was prepared according to the work of Chen^[3] with modifications: 0.33 g of cobalt nitrate hexahydrate and 0.78 g of 2-methylimidazole were dissolved in 30 ml of methanol and stirred vigorously at room temperature for 6 h. The stirred sample was collected directly from the precipitate by centrifugation, washed with methanol, and dried in an oven at 60 °C for 12 h to give a purple powder.

Preparation of samples for control experiments

Preparation of physical mixed samples: CdCo-MOF and Mo-MOF were directly vulcanized to CdCoS and MoS_2 with ethylenediamine, and then 50 mg and 3.335 mg were placed in 10 ml of ethanol solution and sonicated for 120 min, centrifuged, and then dried for 12 h at 60 °C, to obtain the physical mixed samples, which were labelled as mixed samples.

Sample preparation for vulcanization in alkaline solution as solvent at pH=9: An alkaline solution was prepared by dissolving 30mg of NaOH in 100ml of deionized water, and the pH was measured using acid-base paper at pH=9. 100 mg of CdCo-MOF and 6.67 mg of Mo-MOF were dissolved in 20 ml of the alkaline solution, and a vulcanization reaction was carried out for 8 h at 220 °C. The samples obtained by centrifugal drying were labeled as alkaline samples.

Sample preparation for direct mixed vulcanization of metal raw materials: 200 mg Cd(NO₃)₂ • $4H_2O$, 55 mg Co(NO₃)₂ • $6H_2O$, 37 mg MoO₃, and 600 mg of thioacetamide were dissolved in 30 ml of ethylenediamine solution, and vulcanization reaction was carried out at 220 °C for 6 h, and samples obtained after centrifugation and drying were labeled as direct vulcanization samples.

Figure S1. XRD spectra of Cd-MOF\Co-MOF\CdCo-MOF (a) and Mo-MOF (b) ; XRD spectra of Ethy-CCMS\Water-EEMS before and after the photocatalytic reaction (c)-(d).

Figure S2. Elemental mapping images of Ethy-CCMS\Water-CCMS (a)-(b).

Figure S3. SEM image of (a) CdCo-MOF; (b) Ethy-CCMS ; (c) Water-CCMS.

Figure S4. (a) (b) TEM image of Ethy-CCMS before photocatalytic reaction; (c) SEM image of Ethy-CCMS before photocatalytic reaction; (d) (e) TEM image of Ethy-CCMS after photocatalytic reaction; (f) SEM image of Ethy-CCMS after photocatalytic reaction.

Figure S5. Selected electron diffraction maps (SAED): (a) Ethy-CCMS; (b) Water-CCMS.

Figure S6. (a) N₂ adsorption-desorption isotherms and (b) pore size distribution plots for Ethy\Water-CCMS.

Figure S7. (a) UV-vias; (b) Tauc plots; (c) Mott-Schottky spectra of the Water-CCMS

Figure S8. (a) Transition photocurrent spectra; (b) Photoluminescence spectra of the Water-CCMS.

Figure S9. (a)-(d) XPS spectra of Cd, Co, Mo, S of the Water-CCMS

Figure S10. (a)-(c) XPS spectra of Cd, Co, Mo, S of the Ethy-CCS.

Figure S11. (a)-(c) XPS spectra of Cd, Co, Mo, S of the Water-CCS.

Figure S12. (a)-(h) Photo of Ethy-CdS, Ethy-CCMS, CdCo-MOF, Water-CdS, Water-CCS, Water-CCMS, Mo-MO in daylight.

Figure S13. Hydrogen evolution rate of (a) Series of samples with different ratios of elements in water environment; (b) Cyclic

hydrogen production efficiency of Water-CCMS.

Figure S14. Hydrogen evolution rates for Ethy-CCMS, physically mixed samples, alkaline solution sulphide samples and raw

material direct sulphide samples.

Figure S15. XPS analysis of Survey spectrum of Ethy-CCS\Ethy-CCMS and Water-CCS\Water-CCMS.

Figure \$16. Hydrogen evolution rate of three precursor sulfide products, CdIF3, ZnCd-MOF, ZnCd-MOF with Mo-MOF.

Table S1. XPS results of elemental contents of Samples	

Samples	Cd	Со	Мо	S	0
	(at%)	(at%)	(at%)	(at%)	(at%)
Ethy-CCS	18.13	2.36	١	21.99	16.45
Ethy-CCMS	21.97	3.07	1.44	29.22	18.09
Water-CCS	9.44	5.73	١	26.14	42.86
Water-CCMS	14.19	2.63	3.06	25.67	30.03

Table S2. ICP-AES results of elemental contents of Samples

Samples	Cd (mol%)	Co (mol%)	Mo (mol%)
Ethy-CCMS	41.32	16.55	2.19
Water-CCMS	48.48	19.18	5.05

Table 3. Comparison of the $\rm H_2\mathchar`-production$ rates of CdS composite photocatalysts for water splitting

Photocatalyst	Irradiation source	Reaction conditions	Nobel metal cocatalyst	Activity mmolg ⁻ ¹ h ⁻¹	Ref
Ethy- Cd _{0.76} Cd _{0.17} Mo _{0.07} S	300 W Xe lamp(λ>420 nm)	10 mg catalyst 50 mL 10 vol% lactic acid aqueous	١	30.14	This work
CdS/PBC	300 W Xe lamp(λ>420 nm)	25 mg catalyst 50 mL 0.35M Na_2S and 0.25M Na_2SO_3 aqueous	١	14.67	[4]
MoS ₂ -CdS/GDY-10%	300 W Xe lamp(λ>420 nm)	100mg catalyst 100 mL 0.35 M Na $_2 S$ and 0.25M Na $_2 SO_3$ aqueous	١	17.99	[5]
MoS ₂ -tipped CdS nanorod	300 W Xe lamp(AM 1.5)	100 mg catalyst 60ml supernatant collected from plastic pretreatment	١	6.68	[6]
CdS@CoS/WS ₂	300 W Xe lamp(λ>420 nm)	100 mg catalyst 100mL of 25 vol% methanol/H $_{\rm 2}O$ solution	١	10.62	[7]
CdS/PT	350 W Xe lamp(λ>420 nm)	10 mg catalyst 80 mL 10 vol% lactic acid aqueous solution	Pt	9.28	[8]
P-MoS ₂ /CdS	300 W Xe lamp(λ>420 nm)	10 mg catalyst 100 mL $$ 0.35M Na_2S and 0.25M Na_2SO_3 aqueous	١	5.89	[9]
MoS ₂ /CdS	300 W Xe lamp(λ>420 nm)	20 mg catalyst 100 mL 20 vol% lactic acid aqueous solution	١	15.5	[10]
CdS@MoS₂	300 W Xe lamp(λ>420 nm)	20 mg catalyst 100mL 10 vol% lactic acid aqueous solution	١	15.26	[11]
MoS₂/CdS	300 W Xe lamp(λ>420 nm)	50 mg catalyst 100mL 10 vol% lactic acid aqueous solution	١	10.672	[12]
CdS/Co ₉ S ₈	300 W Xe lamp(AM 1.5)	20 mg catalyst 100 mL Na2s and Na2SO3 aqueous	١	1.06	[13]

5%CoP/CdS-P	30x3 W X	5mg catalyst 20 mL water	١	0.231	[14]
b-TiO ₂ /MoS ₂ /CdS	300 W X	20 mg catalyst 100mL 10 vol% lactic acid aqueous solution	١	9	[15]
M-t-CdS Nrs	300 W > lamp(AM 1.5)	e 30 mg catalyst 90mL 28.6 vol% lactic acid aqueous solution	١	8.44	[16]
MoS _{0.2} /CdS-N	300 W > lamp(λ>400 nm)	50 mg catalyst 100mL 10 vol% lactic acid aqueous solution	١	10.1	[17]

References

- 1. Martin-Zarza, P. J. Chem. Soc, Dalton Trans. 1993, 1551.
- 2. G. Zhong and D. Liu, Advanced Materials Interfaces, 2022, 9.
- 3. Y. Z. Chen, C. Wang, Z. Y. Wu, Y. Xiong, Q. Xu, S. H. Yu and H. L. Jiang, *Adv Mater*, 2015, **27**, 5010-5016.
- 4. C. Deng, X. Ling, L. Peng, T. Wang, R. Xu, Y. Zhu, W. Zhang, P. Sun, Y. Wu, H. Hu, Y. Han and H. Le, *Applied Surface Science*, 2023, **623**.
- 5. L. Zhang, Y. Wu, J. Li, Z. Jin, Y. Li and N. Tsubaki, *Materials Today Physics*, 2022, **27**.
- M. Du, Y. Zhang, S. Kang, X. Guo, Y. Ma, M. Xing, Y. Zhu, Y. Chai and B. Qiu, ACS Catalysis, 2022, 12, 12823-12832.
- 7. W. Kong, Z. Xing, H. Zhang, B. Fang, Y. Cui, Z. Li, P. Chen and W. Zhou, *Journal of Materials Chemistry C*, 2022, **10**, 18164-18173.
- 8. C. Cheng, B. He, J. Fan, B. Cheng, S. Cao and J. Yu, *Adv Mater*, 2021, **33**, e2100317.
- 9. J. Xu, X. Yan, Y. Qi, Y. Fu, C. Wang and L. Wang, *Chemical Engineering Journal*, 2019, **375**.
- 10. A. Wu, C. Tian, Y. Jiao, Q. Yan, G. Yang and H. Fu, *Applied Catalysis B: Environmental*, 2017, **203**, 955-963.
- 11. X. Qian, J. Zhang, Z. Guo, S. Liu, J. Liu and J. Lin, *Applied Surface Science*, 2019, **481**, 795-801.
- 12. J. Shi, L. Yang, J. Zhang, Z. Wang, W. Zhu, Y. Wang and Z. Zou, *Chemistry*, 2022, **28**, e202202019.
- 13. B. Qiu, Q. Zhu, M. Du, L. Fan, M. Xing and J. Zhang, *Angew Chem Int Ed Engl*, 2017, **56**, 2684-2688.
- 14. R. Shi, H. F. Ye, F. Liang, Z. Wang, K. Li, Y. Weng, Z. Lin, W. F. Fu, C. M. Che and Y. Chen, *Adv Mater*, 2018, **30**.
- 15. B. Sun, W. Zhou, H. Li, L. Ren, P. Qiao, W. Li and H. Fu, *Adv Mater*, 2018, **30**, e1804282.
- 16. K. Zhang, J. K. Kim, M. Ma, S. Y. Yim, C.-L. Lee, H. Shin and J. H. Park, *Advanced Functional Materials*, 2016, **26**, 4527-4534.
- X. Fu, L. Zhang, L. Liu, H. Li, S. Meng, X. Ye and S. Chen, *Journal of Materials Chemistry A*, 2017, 5, 15287-15293.