Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Solvation Structure Regulation of Deep Eutectic Solvents: Stabilize the Zinc Anode in Rechargeable Zinc-Air Batteries

Yang Song[‡],^a Yongduo Liu[‡]^a, Shijian Luo^{,a} Yuran Yang^{,a} Fadong Chen^{,a} Meng Wang^{,a} Lin Guo^{*b} Siguo Chen^{*a} and Zidong Wei^a

^a College of Chemistry and Chemical Engineering, Chongqing University, State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing, China.

^b State Key Laboratory of Catalytic Materials and Reaction Engineering, SINOPEC Research Institute of Petroleum Processing Co.100083, Beijing, China.

*Corresponding author. Email: csg810519@126.com; guolin.ripp@sinopec.com;

[[][‡]] These authors contributed equally to this work.

Results and Discussion

Fig. S1 The optical photographs of different C_{ZnCl2} electrolyte at 30 $^\circ \! C$

Fig. S2 DSC test from -85 to 25 °C at a scan rate of 2 °C/min;

Fig. S3 a) FTIR spectra and b) peak position of O-H stretch vibration band as a function of the C_{ZnCl2}

Fig. S4 Temperature (T) dependence of ionic conductivity of various C_{ZnCl2};

Fig. S5 The Raman spectra fitted peaks of various C_{ZnCl_2} electrolyte: a) 0.2 M; b) 2.0 M; c) 4.0 M;

Fig. S6 The tafel curves for Zn electrode in various C_{ZnCl_2} electrolytes, a) 0.2 M; b) 1.0 M; c) 2.0 M; d) 4.0 M

Fig. S7 a)The CV curves of W wire electrode in 0.2 M ZnCl₂ with different scan rates; b) Relationships between cathodic peak current density (j_{pc}) and square root of scan rate $(v^{1/2})$ calculated from a)

For a quasi-reversible charge transfer process, the diffusion coefficient of Zn(II) can be determined by the irreversible Randles-Sevick Eq-1¹, which is also applicable to the quasi-reversible systems^{2, 3},

$$j_{p} = 0.4958nFAC_{Zn(II)}D_{Zn(II)}^{1/2} \left(\frac{\alpha n_{\alpha}Fv}{RT}\right)^{1/2}$$

where j_p is the cathodic peak current, n is the number of exchanged electrons, F is the Faraday constant, A is the electrode area, C_{ZnCl_2} is the ZnCl₂ concentration, D_{ZnCl_2} is the diffusion coefficient of Zn species, α is the transfer coefficient, n_{α} is the electron transfer number in the rate-determining step, v is the scan rate, R is the gas constant, T is the absolute temperature. The average transfer coefficient can be calculated as 0.34.⁴

Subsequently, the diffusion coefficients were calculated for other C_{ZnCl^2} using the Nernst-Einstein equation.⁵

$$\kappa = \frac{C_i D_i Z_i F^2}{t_i R T}$$

 C_i the concentration of active ion, mol·L⁻¹; D_i diffusion coefficient of active ion, cm²·s⁻¹; Z_i the charge number of active ion, F the Faraday constant, 96485 C·mol⁻¹; t_i ion mobility number;

Item	$C / mol \cdot m^{-3}$	E^0 / mV	j^0 / Am ⁻²	Ionic conductivity / $S \cdot m^{-1}$	Diffusion coefficient $m^2 \cdot s^{-1}$
0.2 M	200	15.997	2.075	0.5245	2.76E-11
1.0M	1000	11.9567	4.830	0.3565	8.39E-12
2.0M	2000	13.931	8.810	0.2475	4.12E-12
4.0M	4000	10.925	16.331	0.0825	9.71E-13

Table S1 Physicochemical properties of different C_{ZnCl2} electrolytes.

Fig. S8 The schematic drawing of Zn/Cu||Zn cell

Fig. S9 Voltage profiles of the Cu||Zn cell at different cycles of C_{ZnCl_2} at: a) 0.2 M; b) 2.0 M, and c) 4.0 M;

Electrolyte composition	Current density mA·cm ⁻²	Over- potential mV	Viscosity mPa·s	Ionic conductivity mS·cm ⁻¹	Reference
1.0M ZnCl ₂ ChCl- 2Urea-2EG	1	33	69.2	3.56	This Work
ZnCl ₂ -4EG	1	125.9	126.73	1.15	Angew Chem Int Edit 2022 , 61. ⁶
Zn(TFSI) ₂ -7Acetamide	0.1	55	798	0.31	Nat. Commun. 2019 , 10. ⁷
LiTFSI-20Zn(TFSI) ₂ - 3.8Urea/ 2H₂O	0.1	69.1	139	1.85	Nano Energy 2019 , 57, 625-634. ⁸
30 m ZnCl ₂ + 15 m ChCl H₂O	0.2	35	220.8	1.255	Chem. Eng. J. 2023 , 456. ⁹
ZnCl ₂ :acetamide:H ₂ O is 1:3:1	0.1	65	250	1.1	Adv. Funct. Mater. 2021 , 31. ¹⁰

Table S2 Comparison of over-potential, viscosity, and ionic conductivity of 1.0 M $ZnCl_2$ with

Fig. S10 Over-potential of Zn||Zn symmetric cells at current densities from 0.4 to 4.0 mA \cdot cm⁻²

Fig. S11 Cycling performance of the Zn||Zn symmetric cells at a current density of 2.0 mA·cm⁻² for 2 mAh·cm⁻² with 1.0 M ZnCl₂ electrolyte

Fig. S12 a) The current-time curves for -0.2 V (vs. Zn/Zn^{2+}) over a duration of 3600 s at the various C_{ZnCl^2} ; b) The mass of Zn coating at the various C_{ZnCl^2} ;

Fig. S13 The schematic drawing of Zn-air cell set up in which the cathode is C loaded on a gas diffusion layer and the anode is Zn foil;

Fig. S14 a) The photographs of the fresh Zn anode; b) The Zn anode after discharge in 6 M KOH + 0.2 M ZnCl₂; c) The Zn anode after discharge1.0 M ZnCl₂ DES electrolytes

References

- 1. A. J. Bard, L. R. Faulkner and H. S. White, *Electrochemical methods: fundamentals and applications*, John Wiley & Sons, 2022.
- 2. R. Nagaishi, M. Arisaka, T. Kimura and Y. Kitatsuji, J. Alloys Compd., 2007, 431, 221-225.
- 3. S. A. Kuznetsov and M. Gaune-Escard, J. Electroanal. Chem., 2006, 595, 11-22.
- X. L. Xie, X. L. Zou, X. G. Lu, C. Y. Lu, H. W. Cheng, Q. Xu and Z. F. Zhou, *Appl. Surf. Sci.*, 2016, 385, 481-489.
- 5. H. Sato, M. Yui and H. Yoshikawa, J. Nucl. Sci. Technol., 1996, 33, 950-955.
- 6. L. S. Geng, J. S. Meng, X. P. Wang, C. H. Han, K. Han, Z. T. Xiao, M. Huang, P. Xu, L. Zhang, L. Zhou and L. Q. Mai, *Angew Chem Int Edit*, 2022, **61**.
- H. Y. Qiu, X. F. Du, J. W. Zhao, Y. T. Wang, J. W. Ju, Z. Chen, Z. L. Hu, D. P. Yan, X. H. Zhou and G. L. Cui, *Nat. Commun.*, 2019, 10.
- J. W. Zhao, J. Zhang, W. H. Yang, B. B. Chen, Z. M. Zhao, H. Y. Qiu, S. M. Dong, X. H. Zhou, G. L. Cui and L. Q. Chen, *Nano Energy*, 2019, 57, 625-634.
- W. F. Wang, R. Y. Li, Z. Duan, J. J. Zhao, Y. D. Qi, Q. B. Guo, Q. M. Peng, D. S. Wang, S. M. Han and L. Zhang, *Chem. Eng. J.*, 2023, 456.
- 10.J. Q. Shi, T. J. Sun, J. Q. Bao, S. B. Zheng, H. H. Du, L. Li, X. M. Yuan, T. Ma and Z. L. Tao, Adv. Funct. Mater., 2021, **31**.