A Monolithic Nano-Scale Sensor Architecture with Tuneable Gas Diffusion for Molecular Fingerprinting

Alishba T. John^a, Mahdiar Taheri^b, Jodie A. Yuwono^c, Priyank Kumar^d, David R. Nisbet^{e,f,g,h}, Krishnan Murugappan^{a,i*}, Antonio Tricoli^{a,j*}

- ^a Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, The Australian National University, Canberra 2601, Australia
- ^b School of Engineering, The Australian National University, Canberra 2601, Australia
- ^c School of Chemical Engineering, The University of Adelaide, SA 5005, Australia
- ^d School of Chemical Engineering, University of New South Wales, NSW 2052, Australia
- ^e Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australia
- ^f The Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
- ^g Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne Australia
- ^h Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne Australia
- ⁱ Commonwealth Scientific and Industrial Research Organization (CSIRO), Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
- ^j Nanotechnology Research Laboratory, School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Camperdown 2006, Australia

Correspondence: krishnan.murugappan@csiro.au; antonio.tricoli@anu.edu.au

Fig. S1 (a) Dynamic gas sensing response of SnO₂ against ethanol concentrations (0.1 - 1 ppm) at various temperatures: 25 °C, 50 °C, 100 °C, 150 °C. (b) (a) Dynamic gas sensing response of (16.88 µm) ZIF-8/SnO₂ against ethanol concentrations (0.1 - 1 ppm) at various temperatures:

25 °C, 50 °C, 100 °C, 150 °C. (c) Linear responsivity plot of SnO₂ for ethanol concentrations (0.1 – 1 ppm) at various temperatures: 25 °C, 50 °C, 100 °C, 150 °C. (d) Linear responsivity plot of (16.88 μ m) ZIF-8/SnO₂ for ethanol concentrations (0.1 – 1 ppm) at various temperatures: 25 °C, 50 °C, 100 °C, 150 °C.

Fig. S2. Dynamic sensing response of $(9.32 \ \mu m)$ ZIF-8/SnO₂ towards (a) Ethanol (EtOH) and (b) NO₂ in the concentration range of 0.1 -1 ppm at 150 °C

Fig. S3 Linear responsivity of SnO₂ (grey, square), ZnO/SnO₂ (brown, circles), (3.65 μ m) ZIF-8/SnO₂ (purple, upward triangle), (9.32 μ m) ZIF-8/SnO₂ (pink, downward triangle) and (16.88 μ m) ZIF-8/SnO₂ (green, diamonds) from 0.1 – 1 ppm at 150 °C towards (a) NO₂, (b) Ethanol (EtOH), (c) Acetone (Ace), (d) Methanol (MeOH), (e) Propane (Prop) and (d) Ethyl Benzene (EtBz)

	NO ₂	Ethanol	Acetone	Methanol	Propane	Ethyl Benzene
ZIF-8	-0.38	-0.36	-0.33	-0.35	-0.39	-0.15
SnO ₂	-2.00	-0.69	-0.52	-0.66	-0.24	-0.47

Table S1: Adsorption energies (eV) of various target molecules on ZIF-8 and SnO₂ (110)

Fig. S4 Response-recovery curves of SnO₂ (grey), 3.65 μ m ZIF-8/SnO₂ (purple), 9.32 μ m ZIF-8/SnO₂ (pink) and 16.88 μ m ZIF-8/SnO₂ (green) towards 1 ppm of (a) Ethanol (EtOH) and (b) NO₂ at 150 °C.

Fig. S5 Cross-sensitivity to humidity (at 20 C) at 1 ppm NO2. All measurements were performed at 150 °C.