Supporting Information

Efficient Hydrogen Evolution from the Hole-Degenerate-Doped WS₂ Electrocatalyst Over a Wide pH Range

Pamula Siva, and Kuraganti Vasu*

*E-mail: kuraganti.vasu@vit.ac.in

P. Siva, and K. Vasu

Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore,

Tamilnadu-632014, India

Fig. S1 : Simulated Mott-Schottky plots of n-WS₂, p-WS₂-2.4, p-WS₂-6.2 and p^+ -WS₂-9.8 semiconductor electrocatalysts generated from SCAPS software

Fig. S2 Variation of onset potential (@ 1 mA cm⁻²) and overpotentials (@ 10 mA cm⁻²) of all catalysts for different Ir concentration in 0.5M H_2SO_4 electrolyte. The overpotential difference from the standard Pt/C ($E_{Pt/C}-E_{catalyst}$) electrode at *j*=10 mA cm⁻² shown in inset.

Fig. S3 (a) Comparative cyclic voltrametry stability test data for 2000 cycles and (b) chronoampeometry durability measurment of n-WS₂ and p^+ -WS₂-9.8 electrocatalysts in 0.5M H₂SO₄ electrolyte

Fig. S4 (a) Low and (b) high-resolution TEM images, and (c) EDX spectra of p^+ -WS₂-9.8 after 2000 cycles voltrametry stability in 0.5M H₂SO₄ electrolyte

Fig. S5 Cyclic voltametry curve of of n-WS₂, p-WS₂-2.4, p-WS₂-6.2 and p^+ -WS₂-9.8 semiconductors catalysts for different scan rate measured in 0.5 M H₂SO₄ electrolyte.

Fig. S6 Specific capacitance data of n-WS₂, p-WS₂-2.4, p-WS₂-6.2, and p^+ -WS₂-9.8 electrocatalysts measured in 0.5M H₂SO₄ electrolyte.

Fig. S7 Nyquist plots of *n*-WS₂, *p*-WS₂-2.4, *p*-WS₂-6.2, and p^+ -WS₂-9.8 electrocatalysts measured in 0.5M H₂SO₄ electrolyte

Fig. S8 (a) HER polarization with corresponding (d) Tafel plots of *n*-WS₂, *p*-WS₂-2.4, *p*-WS₂-6.2, and p^+ -WS₂-9.8 measured in 0.01 M KOH electrolyte (pH = 12).

Effective DOS VB (cm ⁻³)		2.48x10 ¹⁹	2.48x10 ¹⁹	2.48x10 ¹⁹	2.48x10 ¹⁹	
Electron mobility (cm ² /Vs)		200	200	200	200	
Hole mobility (cm ² /Vs)		50	50	50	50	
Doping density (cm ⁻³)		8x10 ¹⁷	3x10 ¹⁸	8.3x10 ¹⁸	4x10 ¹⁹	
Workfunction (eV)	4.5					5
Electron charge transfer	10 ¹					10 ¹⁰
Hole charge transfer velocity (cm/s)	10 ¹⁰					10 ¹

Table T1

SCAPS simulation software data used to generate electronic band structure of n-WS₂, p-WS₂-2.4, p-WS₂-6.2 and p^+ -WS₂-9.8 semiconductors catalysts at flat band condition including glace carbon electrode (electrode contact) and 0.5 M H₂SO₄ electrolyte (electrolyte contct) data.

 Table T2

 Summary of the HER activity of WS₂ based electrocatalysts measured at different scan rate.

S.No.	Catalyst	Electrolyte	Scan rate (mV s ⁻¹)	Overpotential (mV) @ η ₁₀ (mA cm ⁻²)	References
1.	V SAC@1T-WS ₂	0.5M H ₂ SO ₄	5	61	1
2.	Te doped WS_2	0.5M H ₂ SO ₄	5	116	2
3.	W ₂ C@WS ₂ nanoflowers	0.5M H ₂ SO ₄	10	320	3
4.	NiS/WS ₂ /Ni ₃ S ₄	1M KOH/0.5M H ₂ SO ₄	5	50/60	4
5.	MOF-derived CoS ₂ /WS ₂	0.5M H ₂ SO ₄	5	79	5
6.	Ag/MCNT/WS ₂	1M KOH/0.5M H ₂ SO ₄	5	218.9/182	6
7.	WS ₂ @Co ₉ S ₈	1M KOH	5	274	7
8.	$1 \text{ T-Co}_4\text{S}_3\text{-WS}_2/\text{CC}$	1M KOH	5	75	8
9.	CeO ₂ /WS ₂ /CC	0.5M H ₂ SO ₄	2	128	9
10.	MoS ₂ /WS ₂ -rGO	1M KOH	10	118	10
11.	Fe _x S _v /WS ₂	0.5 M H ₂ SO ₄	5	118	11
12.	SA-Ru-MoS ₂	1M KOH	2	76	12
13.	WS ₂ /WSe ₂	0.5 M H ₂ SO ₄	5	121	13
14.	N-WS ₂ -CC-60	1M KOH/0.5M H ₂ SO ₄	5	175/170	14
15.	1T-CoWS/HMCS	0.5 M H ₂ SO ₄	5	25	15
16.	CoS ₂ @WS ₂ /CC	0.5 M H ₂ SO ₄	0.5	97.2	16
17.	Phosphorus doped WS ₂	0.5 M H ₂ SO ₄	5	88	17
18.	Co-WS ₂	0.5 M H ₂ SO ₄	5	255	18
19.	400WS/CC	0.5 M H ₂ SO ₄ /1M KOH	5	178/235	19
20.	1 T-WS2 P-5	0.5 M H₂SO₄/1M KOH	5	125/190	20
21.	5% Co-WS ₂	0.5 M H₂SO₄/0.5M KOH	10	321/337	21
22.	p ⁺ -WS ₂ -9.8	0.5 M H ₂ SO ₄ /1M KOH /1M Na ₂ SO ₄	20	92/248/548	This work

References:

- 1 A. Han, X. Zhou, X. Wang, S. Liu, Q. Xiong, Q. Zhang, L. Gu, Z. Zhuang, W. Zhang, F. Li, D. Wang, L. J. Li and Y. Li, *Nat. Commun.*, 2021, **12**, 709.
- 2 Y. Pan, F. Zheng, X. Wang, H. Qin, E. Liu, J. Sha, N. Zhao, P. Zhang and L. Ma, *J. Catal.*, 2020, **382**, 204–211.
- 3 T. P. Nguyen, S. Y. Kim, T. H. Lee, H. W. Jang, Q. Van Le and I. T. Kim, *Appl. Surf. Sci.*, 2020, **504**, 144389.
- 4 H. Wang, M. Ma, J. Li, Z. Zhang, W. Zhou and H. Liu, *J. Mater. Chem. A*, 2021, **9**, 25539–25546.
- 5 C. Yao, Q. Wang, C. Peng, R. Wang, J. Liu, N. Tsidaeva and W. Wang, *Chem. Eng. J.*, 2024, **479**, 147924.

- 6 X. Ma, Z. Lin, T. Feng and G. Liu, *Energy & Fuels*, 2023, **37**, 16824–16832.
- 7 L. Xia, K. Pan, H. Wu, F. Wang, Y. Liu, Y. Xu, Z. Dong, B. Wei and S. Wei, *ACS Appl. Mater. Interfaces*, 2022, **14**, 22030-22040.
- 8 Q. Peng, X. Shao, C. Hu, Z. Luo, T. T. Isimjan, Z. Dou, R. Hou and X. Yang, *J. Colloid Interface Sci.*, 2022, **615**, 577–586.
- 9 H. Chen, M. Hu, P. Jing, B. Liu, R. Gao and J. Zhang, *J. Power Sources*, 2022, **521**, 230948.
- X. Xu, W. Xu, L. Zhang, G. Liu, X. Wang, W. Zhong and Y. Du, Sep. Purif. Technol., 2021, 278, 119569.
- 11 H. Chen, Y. Li, H. Huang, Q. Kang and T. Ma, *Energy & Fuels*, 2022, **36**, 4888–4894.
- 12 J. Zhang, X. Xu, L. Yang, D. Cheng and D. Cao, *Small Methods*, 2019, **3**, 1900653.
- 13 L. Sun, H. Xu, Z. Cheng, D. Zheng, Q. Zhou, S. Yang and J. Lin, *Chem. Eng. J.*, 2022, **443**, 136348.
- H. Wang, Z. Xu, Z. Zhang, S. Hu, M. Ma, Z. Zhang, W. Zhou and H. Liu, *Nanoscale*, 2020, 12, 22541–22550.
- 15 C. Yue, F. Sun, N. Liu, Y. Liu, W. Bao, X. Zhang, C. Zhang, S. Ma, Y. Zhou and C. Feng, *Fuel*, 2024, **357**, 129668.
- 16 X. Zhou, X. Yang, H. Li, M. N. Hedhili, K.-W. Huang, L.-J. Li and W. Zhang, *J. Mater. Chem. A*, 2017, **5**, 15552–15558.
- 17 F. Wang, S. Niu, X. Liang, G. Wang and M. Chen, *Nano Res.*, 2022, 1–7.
- 18 L. Zhou, S. Yan, H. Song, H. Wu and Y. Shi, *Sci. Rep.*, 2019, **9**, 1357.
- 19 Q. Zhu, W. Chen, H. Cheng, Z. Lu and H. Pan, *ChemCatChem*, 2019, **11**, 2667–2675.
- 20 L. Sun, M. Gao, Z. Jing, Z. Cheng, D. Zheng, H. Xu, Q. Zhou and J. Lin, *Chem. Eng. J.*, 2022, **429**, 132187.
- 21 S. R. Kadam, R. Bar-Ziv and M. Bar-Sadan, New J. Chem., 2022, 46, 20102–20107.