## **Supporting Information**

## Fabrication of superaerophobic Ru-doped *c*-CoSe<sub>2</sub> for efficient hydrogen production

Yujie Wei, ‡<sup>a</sup> Jianying Wang, <sup>#</sup> Yahang Shang,<sup>a</sup> Chang Lv,<sup>a</sup> Xiaoyang He,<sup>b</sup> Tao

Wang,<sup>a</sup> Zuofeng Chen,<sup>b</sup> Lvlv Ji\*<sup>a</sup> and Sheng Wang\*<sup>a</sup>

<sup>a</sup>School of Materials Science and Engineering, Zhejiang Sci-Tech University,

Hangzhou 310018, China

<sup>b</sup>School of Chemical Science and Engineering, Tongji University, Shanghai 200092,

China

<sup>‡</sup>These two authors contributed equally to this work.

\*Corresponding authors. E-mail addresses: llji@zstu.edu.cn (Lvlv Ji); wangsheng@zstu.edu.cn (Sheng Wang)



Figure S1. SEM images of CC at different magnifications.



Figure S2. SEM images of Co-ZIF/CC at different magnifications.



Figure S3. (a) XRD pattern and (b) FT-IR spectrum of Co-ZIF/CC. (c) Crystal structure of Co-ZIF.



**Figure S4.** (a) XRD patterns and (b) FT-IR spectra of Co-ZIF/CC and RuCo-LDH/CC-*x* series samples.



Figure S5. XPS survey spectra of *o*-CoSe<sub>2</sub>/CC and Ru-*c*-CoSe<sub>2</sub>/CC-3.



Figure S6. High-resolution N 1s XPS spectra of *o*-CoSe<sub>2</sub>/CC and Ru-*c*-CoSe<sub>2</sub>/CC-3.



Figure S7. SEM images of (a, e) o-CoSe<sub>2</sub>/CC, (b, f) Ru-*c*,o-CoSe<sub>2</sub>/CC-1, (c, g) Ru-*c*,o-CoSe<sub>2</sub>/CC-2, and (d, h) Ru-*c*-CoSe<sub>2</sub>/CC-4.



Figure S8. CV curves of (a) o-CoSe<sub>2</sub>/CC, (b) Ru-c,o-CoSe<sub>2</sub>/CC-1, (c) Ru-c,o-CoSe<sub>2</sub>/CC-2, (d) Ru-c-CoSe<sub>2</sub>/CC-3 and (e) Ru-c-CoSe<sub>2</sub>/CC-4 at different scan rates from 20 to 100 mV s<sup>-1</sup> within the potential range of 0 – 0.2 V vs. RHE in 0.5 M H<sub>2</sub>SO<sub>4</sub>.



Figure S9. Nyquist plots of the samples in 1 M KOH under an overpotential of 110 mV.



Figure S10. SEM images of (a, d) Ru-c-CoSe<sub>2</sub>/CC-3, (b, e) Ru-c-CoSe<sub>2</sub>/CC-450 and

(c, f) Ru-*c*-CoSe<sub>2</sub>/CC-500.



Figure S11. SEM images of (a, d) o-CoSe<sub>2</sub>/CC, (b, e) c,o-CoSe<sub>2</sub>/CC-450 and (c, f) c-

CoSe<sub>2</sub>/CC-500.



Figure S12. Tafel plots of o-CoSe<sub>2</sub>/CC, c,o-CoSe<sub>2</sub>/CC-450, c-CoSe<sub>2</sub>/CC-500, Ru-c-CoSe<sub>2</sub>/CC-3, Ru-c-CoSe<sub>2</sub>/CC-450 and Ru-c-CoSe<sub>2</sub>/CC-500 in (a) 0.5 M H<sub>2</sub>SO<sub>4</sub> and (b) 1 M KOH.



**Figure S13.** Top and side views of schematic models for (a) Ru-*c*-CoSe<sub>2</sub>(211) and (b) *c*-CoSe<sub>2</sub>(211).



**Figure S14.** The electronic density of states calculated for (a) Ru-*c*-CoSe<sub>2</sub> and (b) *c*-CoSe<sub>2</sub>.



Figure S15. Top view of schematic model of charge density-difference for Ru-*c*-CoSe<sub>2</sub>.



Figure S16. Contact angle of a  $H_2$  bubble on Ru-*c*-CoSe<sub>2</sub>/CC-3.

| Electrocatalysts                            | $\eta_{10}$ (mV) | $\eta_{100}$ (mV) | <i>b</i><br>(mV dec <sup>-1</sup> ) | Ref.                                                       |  |
|---------------------------------------------|------------------|-------------------|-------------------------------------|------------------------------------------------------------|--|
| Ru-c-CoSe2/CC-3                             | 105              | 144               | 32.5                                | This work                                                  |  |
| Fe-CoSe <sub>2</sub> @NC                    | 143              | 184               | 40.9                                | ACS Sustain. Chem. Eng<br><b>2018</b> , 6, 8672            |  |
| CoSe <sub>2</sub> @DC                       | 132              | 260               | 82                                  | Nano Energy <b>2016</b> , 28,<br>143                       |  |
| pure CoSe <sub>2</sub>                      | 209              | -                 | 72.2                                | <i>Electrochim. Acta</i> <b>2019</b> , <i>322</i> , 134739 |  |
| m-CoSe <sub>2</sub>                         | 124              | -                 | 60                                  | Nat. Commun. <b>2019</b> , 10,<br>5338                     |  |
| CoSe <sub>2</sub> /CNTAs-3                  | 204              | 229               | 36.7                                | <i>Electrochim. Acta</i> <b>2018</b> , 285, 254            |  |
| CoSe <sub>2</sub> /SDGC-60                  | 203              | -                 | 55.8                                | Int. J. Hydrogen Energy<br>2019, 44, 13424                 |  |
| CoSe <sub>2</sub>                           | 115              | 235               | 115                                 | Small 2020, 16, 1906629                                    |  |
| o-CoSe <sub>2</sub> -NC                     | 147              | -                 | 39.8                                | ACS Sustain. Chem. En<br><b>2022</b> , 10, 4022            |  |
| CoSe                                        | 242.8            | -                 | 58                                  | Angew. Chem. Int. Ed.<br><b>2020</b> , 59, 22743           |  |
| c-CoSe <sub>2</sub> @HC                     | 189.2            | -                 | 50.8                                | <i>Chem. Eng. J.</i> <b>2021</b> , <i>424</i><br>130341    |  |
| CoSe <sub>2</sub> NPs                       | 169              | -                 | 56                                  | J. Mater. Chem. A <b>2018</b><br>6, 7842                   |  |
| MOF-D CoSe <sub>2</sub>                     | 195              | -                 | 43                                  | Sustain. Energy Fuels<br><b>2021</b> , 5, 4992             |  |
| CoSe <sub>2</sub> -CNT                      | 174              | -                 | 37.8                                | Small 2017, 13, 1700068                                    |  |
| 1D-CoSe <sub>2</sub> (tex-48h)<br>nanoarray | 216              | -                 | 78                                  | Dalton Trans. 2020, 49,<br>14191                           |  |

**Table S1.** Comparison of the HER catalytic performance of Ru-c- $CoSe_2/CC$ -3 with the reported  $CoSe_2$ -based electrocatalysts in 0.5 M H<sub>2</sub>SO<sub>4</sub>.

| Electrocatalysts                                                | $\eta_{10}$ (mV) | $\eta_{100}$ (mV) | b<br>(mV dec <sup>-1</sup> ) | Ref.                                                                 |
|-----------------------------------------------------------------|------------------|-------------------|------------------------------|----------------------------------------------------------------------|
| Ru-c-CoSe2/CC-3                                                 | 97               | 226               | 128.7                        | This work                                                            |
| c-CoSe <sub>2</sub> /CC                                         | 190              | -                 | 85                           | Adv. Mater. 2016, 28, 7527                                           |
| N-c-CoSe <sub>2</sub>                                           | 98               | -                 | 63.4                         | Angew. Chem. Int. Ed. <b>2021</b> ,<br>60, 21575                     |
| CoSe <sub>2</sub> /CC                                           | 136              | 380               | 58                           | <i>Chin. Chem. Lett.</i> <b>2023</b> , <i>34</i> , 107364            |
| MOF-CoSe <sub>2</sub> -160°                                     | 156              | -                 | 40                           | Inorg. Chem. 2020, 59, 12778                                         |
| B-CoSe <sub>2</sub> /CC                                         | 153              | 260               | 85                           | Colloids Surf. A Physicochem.<br>Eng. Asp. <b>2022</b> , 646, 128903 |
| Annealled c-CoSe <sub>2</sub>                                   | 248              | -                 | 155                          | Nat. Commun. 2018, 9, 2533                                           |
| o-CoSe <sub>2</sub>                                             | 220              | -                 | 107                          | ACS Omega 2022, 7, 15901                                             |
| MoS <sub>2</sub> @CoSe <sub>2</sub> -CC                         | 101              | -                 | 67                           | Nanoscale <b>2022</b> , 14, 2490                                     |
| c-CoSe <sub>2</sub>                                             | 149              | -                 | 79.1                         | J. Mater. Chem. A. <b>2017</b> , 5,<br>4513                          |
| CoSe <sub>2</sub> NPs                                           | 278              | -                 | 120                          | J. Mater. Chem. A. <b>2018</b> , 6,<br>7842                          |
| o-CoSe <sub>2</sub> /c-CoSe <sub>2</sub> /<br>MoSe <sub>2</sub> | 112              | -                 | 96.9                         | Mater. Today Chem. <b>2022</b> , 23, 100724                          |
| CoSe/Co(OH <sub>2</sub> )-<br>CM(AE)                            | 207              | -                 | 126                          | Compos. B. Eng. <b>2022</b> , 236, 109823                            |
| CoSe <sub>2</sub> <sup>(400)</sup> -NC-800                      | 234              | -                 | 95                           | ACS Appl. Mater. Interfaces <b>2019</b> , 11, 3372                   |
| p-CoSe <sub>2</sub> /CC                                         | 138              | -                 | 83                           | ACS Sustain. Chem. Eng.<br><b>2018</b> , 6, 15374                    |

**Table S2.** Comparison of the HER catalytic performance of Ru-c- $CoSe_2/CC$ -3 with the reported  $CoSe_2$ -based electrocatalysts in 1 M KOH.