Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Photocatalytic fixation of nitrogen to ammonia with Ce/S co-doped TiO₂ catalyst:

Synergistic tuning of heterovalent metal states and oxygen vacancy defects

Pengkun Zhang¹, Longyan Chen¹, Dong-Hau Kuo^{2,*}, Binghong Wu¹, Zhengjie Su¹, Dongfang Lu^{1,*}, Oinhan Wu¹, Jiqing Li^{1,*}, Jinguo Lin^{1,*}, Xiaoyun Chen^{1,*}

¹College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China

² Department of Materials Science and Engineering & Graduate Institute of Energy and Sustainability Technology,

National Taiwan University of Science and Technology, Taipei 10607, Taiwan

*Corresponding author

E-mail address: <u>dhkuo@mail.ntust.edu.tw</u> (D. H. Kuo)

E-mail address: <u>fjldf@126.com</u> (D. Lu)

E-mail address: <u>nfuljq@163.com</u> (J. Li)

E-mail address: <u>fjlinjg@126.com</u> (J. Lin)

E-mail address: <u>fjchenxy@126.com</u> (X. Chen)

Experimental Section

1. Computation of apparent quantum efficiency (AQE) and solar-to-ammonia (STA) conversion efficiency

According to the literature reports [1], the apparent quantum efficiency (AQE) is determined. The catalytic experiments for determining AQE were performed in pure water (100 mL) without any sacrificial reagents. 50 mg of TiCeOS-3, used as the photocatalyst, was added to the solution. A 300 W Xe lamp irradiated the reaction solution with a band-pass filter for the wavelength of 420 nm. A CEL-NP2000 photoradiometer measured the photon flux of the incident light. The AQE is calculated according to the equation below:

$$AQE = \frac{\text{Number of reacted electrons}}{\text{Number of incident photons}} \times 100\% = \frac{6 \cdot n_{AM} \cdot N_A}{\frac{W \cdot A \cdot t}{h \cdot v}} \times 100\%$$

where n_{AM} represents the molar number of generated ammonia, while W, A, t, and v are for the incident light intensity, irradiation area, time, and frequency, respectively. N_A and h are Avogadro's constant and Planck constant, respectively.

According to the literature reports [2, 3], to determine the Solar-to-Ammonia (STA) conversion efficiency, reactions were performed using a solar simulator, where the efficiency was calculated as $STA = [\Delta G \text{ for } NH_3 \text{ generation } (J \cdot \text{mol}^{-1})] \times [NH_3 \text{ evolved } (\text{mol})] \text{ [total input energy } (W)] \times \text{ [reaction}$ time (s)] × 100% In the above equations, the ΔG° values for NH₃ generation is 339 J·mol⁻¹. The overall irradiance of the AM1.5G spectrum was 100 mW cm⁻², and the irradiation area was 4.26 cm².

$$STA = \frac{\left[\Delta G \text{ for } NH_3 \text{ generation } (J \cdot mol^{-1})\right] \times [NH_3 \text{ evolved } (mol)]}{[\text{total input energy } (W)] \times [\text{reaction time } (s)]} \times 100\%$$

In the above equations, the ΔG° values for NH₃ generation is 339 kJ·mol⁻¹. The overall irradiance of the AM1.5G spectrum was 100 mW cm⁻², and the irradiation area was 4.26 cm².

2. NH₃ product characterization and qualification.

2.1 Indophenol blue method

The concentration of ammonium ions was determined via the indophenol blue method [4, 5]. The mixed solution at the end of the photocatalytic reaction was centrifuged and filtered with a 0.02 μ m PTFE (polytetrafluoroethylene) membrane, then 4 mL of the mixture solution was removed in a colorimetric tube and 2 mL of 1M NaOH solution (containing 5 wt% salicylic acid, 5 wt% sodium citrate) were added, followed by 1 mL of 0.05 M NaClO and 0.2 mL of 1 wt% sodium nitroprusside solution each. After mixing all the reagents, a yellow-green solution was obtained. The mixture solution was reacted for 2 h under light-protected conditions, and the absorbance at λ = 688 nm was recorded via a TU-1901 ultraviolet-visible spectrophotometer. According to the Lambert-Beer's Law calculation, the NH⁴⁺ concentration.

2.2 Nessler's reagent method

The concentration of ammonium ions was determined via the Nessler reagent method [6, 7]. The supernatant was centrifuged individually at the end of the reaction and filtered with a 0.02 μ m PTFE (polytetrafluoroethylene) membrane and then placed into a 10 mL colorimeter tube, to which 0.2 mL of potassium sodium tartrate solution and Nessler's reagent was added, shaken well, and then left to stand for 10 min. Finally, the concentration of NH⁴⁺ was measured at 420 nm via a TU-1901

ultraviolet-visible spectrophotometer. The concentration of NH⁴⁺ was calculated via the Lambert-Beer's Law.

2.3 Watt-Chrisp method conditions

The concentration of ammonium ions was determined via the Watt-Chrisp method [8]. Mix 2 g of (dimethylamino) benzaldehyde with 10 mL of concentrated solution, HCl, and 100 mL of ethanol, and use it as a reagent for the determination of hydrazine. Then, take 1 mL of the reagent and add the mixture to the remaining 1 mL of the reaction mixture. After 30 min, measure the absorption of the solution at 455nm using a UV visible spectrometer.

2.4 Ion chromatography test conditions

According to the literature reports [9], The Thermo Fisher ICS-600 cationic ion chromatograph with Pac CS12 A 4×250 mm (ICS) was further used to determine the NH₃ concentration. The testing conditions are listed in Table S1.

Conditions	Details	Conditions	Details
Analytical column	Ion Pac CS12 A 4×250 mm	Run time	15 min
Protective column	Ion Pac CG12A 4×50 mm	Detector	Conductivity detector
Leachate	20 mM Methyl sulfonic acid aqueous solution	Suppressor	CDRS 600 (4 mm) Self- circulation inhibition
Flow rate	1.0 mL/min	Sample injector	AS-DV
Sample volume	10 ul	Sampling mode	Automatic sampling

Table S1 ICS determines the conditions of the NH₃ concentration

Additional figures and tables

Fig. S1 The ultraviolet-visible absorption spectra of TiO₂, TiOS, TiCeO, and TiCeOS catalysts converted to the $(\alpha hv)^2$ -*hv* plots for the direct bandgap calculation.

Fig. S2 (a-g) Mott–Schottky curves of TiO₂, TiOS, TiCeO, and TiCeOS conducting at 1000 Hz.

Fig. S3 FTIR spectra of TiO₂, TiOS, and TiCeOS catalysts.

Fig. S4 CV curves of TiO₂, TiOS, TiCeO, and TiCeOS catalysts.

Fig. S5 The test results of (a) indophenol blue, (b) Nessler's reagent, and (c) Watt-Chrisp methods.

Fig. S6 The standard curves of (a, b) indophenol bule, (c, d) Nessler's reagent, and (e) ion chromatography for ammonium ion concentration detection.

Fig. S7 (a) The UV-Vis absorption spectra and (b) corresponding calibration curves for the colorimetric N₂H₄ assay using the in 0.001 M H₂SO₄.

Fig. S8 ¹H-NMR (400 MHz) spectra of solution after photocatalytic N_2 fixation through TiCeOS as a photocatalyst in ¹⁴N₂ or ¹⁵N₂ atmosphere.

Catalyst	Elements percentage (%)			Ov/	$Ce^{3+}/$	Crystallinity	Crystal	SBET	
	Ti	Ce	0	S	$O_L + O_V$	(%)	(%)	size (nm)	(m ² /g)
TiO ₂	34.18		65.82				86.11	5.10	119.28
TiOS	33.76		62.59	3.65	4.63		82.66	4.30	130.54
TiCeO	31.89	3.86	64.25		1.03	2.48	83.52	5.02	123.63
TiCeOS-1	31.96	4.03	59.83	4.18	7.48	18.46	80.92	4.30	162.43
TiCeOS-2	31.88	4.12	59.48	4.52	13.56	35.64	79.63	4.50	183.35
TiCeOS-3	31.81	4.23	59.04	4.92	22.24	56.89	77.68	4.10	197.68
TiCeOS-4	31.39	4.47	58.79	5.35	11.91	63.58	76.64	4.30	175.31
TiCeOS-3 after reaction	31.82	4.14	59.44	4.60	22.12	57.12	77.72	4.10	196.92

Table S2 Crystallinity, crystal size, SBET, and XPS analyses of TiO2, TiOS, and TiCeOS catalysts

Catalyst	Ti (%)	Ce (%)	O (%)	S (%)
TiO ₂	34.43		65.57	
TiOS	34.03		62.50	3.47
TiCeO	32.26	3.92	63.82	
TiCeOS-1	32.04	4.06	59.81	4.09
TiCeOS-2	31.91	4.16	59.51	4.42
TiCeOS-3	31.85	4.25	59.02	4.88
TiCeOS-4	31.47	4.54	58.69	5.30
TiCeOS-3	31 94	4 20	59 50	4 36
after reaction	51.74	1.20	57.50	т.50

Table S3 Element analyses tested by XRF

Table S4 Element analyses tested by SEM-EDX

Catalyst	Ti (%)	Ce (%)	O (%)	S (%)
TiO ₂	35.76		64.24	
TiOS	34.68		62.04	3.28
TiCeO	32.58	4.26	63.16	
TiCeOS-1	32.23	4.33	59.48	3.96
TiCeOS-2	32.11	4.49	59.18	4.22
TiCeOS-3	31.92	4.65	58.57	4.86
TiCeOS-4	31.26	4.82	58.48	5.44
TiCeOS-3 after reaction	32.15	4.48	59.10	4.25

Table S5 The testing results via indophenol blue, Nessler's reagent, and ion chromatography methods

Catalysts	indophenol blue $(\mu mol \cdot g^{-1} \cdot h^{-1})$	Nessler's reagent (μ mol \cdot g ⁻¹ \cdot h ⁻¹)	ion chromatography $(\mu mol \cdot g^{-1} \cdot h^{-1})$
TiOS	60.3	68.8	56.0
TiCeOS-1	126.8	133.2	122.5
TiCeOS-2	257.5	262.5	251.8
TiCeOS-3	382.4	395.9	378.1
TiCeOS-4	215.1	220.3	211.7

Photocatalyst	Light source	Reaction medium	Sacrificial agent	NH₃ evolved µmol∙g⁻¹∙h⁻¹	NH3 analysis methods	AQE and STA conversion efficiency	Ref.
CeO ₂ -BiFeO ₃	UV–vis	Water	none	117.77 μmol·g ⁻¹ ·h ⁻¹	Nessler's reagent method		[10]
TiO ₂ /SrTiO ₃ /g- C ₃ N ₄	Simulated solar light	Water, ethanol (10%, v/v)	ethanol	2192.0 μmol·g ⁻¹ ·h ⁻¹	Nessler's reagent method		[11]
Ag-KNbO3	Simulated solar light	Water, ethanol (10%, v/v)	ethanol	385.0 µmol·g ⁻¹ ·h ⁻¹	Nessler's reagent method		[12]
Cu-doped TiO ₂	300 W Xe lamp	Water	none	78.90 μmol∙g ⁻¹ ∙h ⁻¹	Nessler's reagent method and ion chromatography	AQE= 0.74% at 380 nm STA= 0.23% at 420 nm	[13]
Bi-Bi ₂ WO ₆	Simulated solar light	Water	none	86.0 μmol·g ⁻¹ ·h ⁻¹	Nessler's reagent method		[14]
Au/TiO2	300 W Xe lamp (λ> 420 nm)	Water, methanol (10%, v/v)	methanol	78.60 μmol·g ⁻¹ ·h ⁻¹	Indophenol-blue method	AQE= 0.82% at 550 nm	[15]
P-doped g-C ₃ N ₄	2 kW Xe lamp (λ> 420 nm)	Water	none	0.20 μmol·h ⁻¹	Ion chromatography	STA= 0.1%	[2]
S-doped g-C ₃ N ₄	500 W Xe lamp	Water, methanol (4%, v/v)	methanol	5990 μmol·g ⁻¹ ·h ⁻¹	Nessler's reagent method		[16]
WO ₃ /CdS	300 W Xe lamp	Water	none	35.8 μmol·g ⁻¹ ·h ⁻¹	ion chromatography		[17]
La/MoO _{3-x}	300 W Xe lamp	Water	none	209 μmol·g ⁻¹ ·h ⁻¹	ion chromatography		[18]
AgPt–TiO ₂	300 W Xe lamp	Water	none	38.4 μmol·g ⁻¹ ·h ⁻¹	ion chromatography		[19]
Pt/N–MoS ₂	300 W Xe lamp	Water, methanol (10%, v/v)	methanol	133.8 μmol·g ⁻¹ ·h ⁻¹	Nessler's reagent method		[20]
F-Vo-TiO2	300 W Xe lamp	Water	none	206 µmol·g ⁻¹ ·h ⁻¹	ion chromatography	AQE=0.38% at 420 nm	[21]
Reduced TiO ₂	300 W Xe lamp	Water, methanol (10%, v/v)	methanol	324.86 μmol·g ⁻¹ ·h ⁻¹	Ion chromatography	AQY=1.1% at 365 nm	[22]
Sb/TiO2	300 W Xe lamp	Water	none	32.2 μmol·g ⁻¹ ·h ⁻¹	Indophenol blue method		[23]
TiCeOS-3	300 W Xe lamp (λ> 420 nm)	Water	none	382.4 µmol·g ⁻¹ ·h ⁻¹	Nessler's reagent Method, indophenol blue method, and ion chromatography	AQE= 3.32% at 420 nm STA= 0.058% at AM1.5G	This work

Table S6 The literature-reported catalysts for photocatalytic N₂ fixation

References

- X. Chen, X. Zhang, Y. Li, M. Qi, J. Li, Z. Tang, Z. Zhou, Y. Xu, Transition metal doping BiOBr nanosheets with oxygen vacancy and exposed {102} facets for visible light nitrogen fixation, *Appl. Catal. B-Environ.*, 281 (2021) 119516.
- [2] Y. Shiraishi, S. Shiota, Y. Kofuji, M. Hashimoto, K. Chishiro, H. Hirakawa, S. Tanaka, S. Ichikawa, T. Hirai, Nitrogen fixation with water on carbon-nitride-based metal-free photocatalysts with 0.1% Solar-to-Ammonia energy conversion efficiency. ACS Appl. Energy Mater., 1 (2018) 4169-4177.
- [3] Z. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Shwarsctein, A.J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E.W. McFarland, K. Domen, E.L. Miller, J.A. Turner, H.N. Dinh, Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols, *J. Mater. Res.*, 25 (2010) 3-16.
- [4] K. Chen, X. Xu, Q. Mei, J. Huang, G. Yang, Q. Wang, Porous TiWO₃/SrWO₄ with high titanium molar ratio for efficient photoelectrocatalytic nitrogen reduction under mild conditions, *Appl. Catal. B-Environ.*, 341 (2024) 123299.
- [5] A. Chowdhury, N. Peela, A. Golder, Synthesis of spinel type 2D Co₃O₄ nanodiscs using gallic acid for electrochemical NH₃ formation by N₂ reduction, *Mater. Sci. Eng. B.*, 299 (2024) 116912.
- [6] H. Zhao, J. Duan, Z. Zhang, W. Wang, High-performance gas-liquid-solid optofluidic microreactor with TiO_{2-x}-Ag@HKUST-1/carbon paper for efficient photocatalytic nitrogen fixation to ammonia, *Colloids Surf. A: Physicochem. Eng. Aspects.*, 660 (2023) 130874.
- [7] D. Wu, J. Tian, Y. Xing, X. Jin, G. Ni, Fabrication of Z-scheme ZnO/Bi₂O₄ heterojunction

photocatalyst with superior photocatalytic nitrogen fixation under visible light irradiation, *Solid State Sci.*, 119 (2021) 106709.

- [8] M. Sharma, A. Kumar, D. Gill, S. Jaiswal, A. Patra, S. Bhattacharya, V. Krishnan, Boosting Photocatalytic Nitrogen Fixation via Nanoarchitectonics Using Oxygen Vacancy Regulation in W-Doped Bi₂MoO₆ Nanosheets, ACS Appl. Mater. Interfaces., 15 (2023) 55765-55778.
- [9] N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, X. Wu, L. Song,
 J. Zhu, Y. Xiong, Refining defect states in W₁₈O₄₉ by Mo doping: A strategy for tuning N₂ activation towards solar-driven nitrogen fixation, *J. Am. Chem. Soc.*, 140 (2018) 9434-9443.
- [10]S. Mansingh, S. Sultana, R. Acharya, M. Ghosh, K. Parida, Efficient photon conversion via double charge dynamics CeO₂-BiFeO₃ p-n heterojunction photocatalyst promising toward N₂ fixation and phenol-Cr (VI) detoxification. *Inorg. Chem.*, 59 (2020) 3856-3873.
- [11]R. Tao, X. Li, X. Li, C. Shao, Y. Liu, TiO₂/SrTiO₃/g-C₃N₄ Ternary heterojunction nanofibers: Gradient energy band, cascade charge transfer, enhanced photocatalytic hydrogen evolution, and nitrogen fixation. *Nanoscale*, 12 (2020) 8320-8329.
- [12] P. Xing, S. Wu, Y. Chen, P. Chen, X. Hu, H. Lin, L.H. Zhao, Y. He, New application and excellent performance of Ag/KNbO₃ nanocomposite in photocatalytic NH3 synthesis. *ACS Sustain. Chem. Eng.*, 7 (2019) 12408-12418.
- [13] Y. Zhao, Y. Zhao, R. Shi, B. Wang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Tuning oxygen vacancies in ultrathin TiO₂ nanosheets to boost photocatalytic nitrogen fixation up to 700 nm, *Adv. Mater.*, 31 (2019) 1806482.
- [14]S. Zhou, C. Zhang, J. Liu, J. Liao, Y. Kong, Y. Xu, G. Chen, Formation of an priented Bi₂WO₆ photocatalyst induced by in situ bi reduction and its use for efficient nitrogen fixation. *Catal. Sci.*

Technol., 9 (2019) 5562-5566.

- [15] J. Yang, Y. Guo, R. Jiang, F. Qin, H. Zhang, W. Lu, J. Wang, J.C. Yu, High-efficiency "workingin tandem" nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets, J. Am. Chem. Soc., 140 (2018) 8497.
- [16]S. Cao, B. Fan, Y. Feng, H. Chen, F. Jiang, X. Wang, Sulfur-doped g-C₃N₄ nanosheets with surface carbon vacancies: General synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation, *Chem. Eng. J.*, 353 (2018) 147-156.
- [17] P. Xia, X. Pan, S. Jiang, J. Yu, B, He, P.M. Ismail, W. Bai, J. Yang, H. Zhang, M. Cheng, H. Li, Q. Zhang, C. Xiao, Y. Xie, Designing a redox heterojunction for photocatalytic "overall nitrogen fixation" under mild conditions. *Adv, Mater.*, 34 (2022) 2200563.
- [18]X. Liu, Y. Luo, C. Ling, Y. Shi, G. Zhan, H. Li, H. Gu, K. Wei, F. Guo, Z. Ai, L. Zhang, Rare earth La single atoms supported MoO_{3-x} for efficient photocatalytic nitrogen fixation. *Appl. Catal. B. Environ.*, 301 (2022) 120766.
- [19]X. Bian, Y. Zhao, S. Zhang, D. Li, R. Shi, C. Zhou, L.Z. Wu, T. Zhang, Enhancing the supply of activated hydrogen to promote photocatalytic nitrogen fixation. ACS Mater. Lett., 3 (2021) 1521-1527.
- [20] H. Maimaitizi, A. Abulizi, T. Zhang, K. Okitsu, J. Zhu, Facile photo-ultrasonic assisted synthesis of flower-like Pt/N-MoS₂ microsphere as an efficient sonophotocatalyst for nitrogen fixation. *Ultrason. Sonochem.*, 63 (2020) 104956.
- [21]R. Guan, D. Wang, Y. Zhang, C. Liu, W. Xu, J. Wang, Z. Zhao, M. Feng, Q. Shang, Z. Sun, Enhanced photocatalytic N₂ fixation via defective and fluoride modified TiO₂ surface, *Appl. Catal. B: Environ.*, 282 (2021) 119580.

- [22]G. Zhang, X.Yang, C. He, P. Zhang, H. Mi, Constructing a tunable defect structure in TiO₂ for photocatalytic nitrogen fixation. J. Mater. Chem. A., 8 (2020) 334-341.
- [23]Z. Zhao, S. Hong, C. Yan, C. Choi, Y. Jung, Y. Liu, S. Liu, X. Li, J. Qiu, Z. Sun, Efficient visiblelight driven N₂ fixation over two-dimensional Sb/TiO₂ composites. *Chem. Comm.*, 55 (2019) 7171-7174.