## Supporting information

## Unveiling the mechanism of thermal catalytic oxidation HCHO from

## kiln exhaust gas by Sc-decorated Cr2CO2-MXene

Jinkai Yang<sup>1,2</sup>, Zhongyong Zhang<sup>1,2</sup>, Jiahe Peng<sup>1,2</sup>, Jieshuo Wan<sup>1,2</sup>, Zhaohui Liu<sup>1,2</sup>,

Peng Zhang<sup>3</sup>, Neng Li<sup>1,2\*</sup>

<sup>1</sup>State Key Laboratory of Silicate Materials for Architectures, Wuhan University of

Technology, Wuhan 430070, China. E-mail: lineng@whut.edu.cn

<sup>2</sup>Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000,

Guangdong, China

<sup>3</sup>State Center for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

Table S1 The different adsorption site and energy of the Sc/Cr<sub>2</sub>CO<sub>2</sub>.

|                  | Fcc     | Нср     | Тор     |
|------------------|---------|---------|---------|
| E <sub>ads</sub> | -393.40 | -393.33 | -393.03 |

**Table S2** The  $O_2$  adsorption energies ( $E_{ads}$ ) of Sc atom on the pristine and defective  $Cr_2CO_2$  at different temperatures.

|      | O2 <sub>ads</sub> | O2+MXene                  | E <sub>ads</sub> |
|------|-------------------|---------------------------|------------------|
| 298K | -404.88           | (-9.27)+(-393.40)=-402.67 | -2.21            |
| 448K | -406.74           | (-9.27)+(-393.58)=-402.85 | -3.89            |

**Table S3** The HCHO adsorption energies ( $E_{ads}$ ) of Sc atom on the pristine and defective  $Cr_2CO_2$  at different temperatures.

|      | HCHO <sub>ads</sub> | HCHO+MXene                     | E <sub>ads</sub> |
|------|---------------------|--------------------------------|------------------|
| 298K | -416.64             | (-22.15) + (-393.40) = -415.56 | -1.08            |
| 448K | -418.10             | (-22.15) + (-393.58) = -415.74 | -2.36            |

**Table S4** The  $O_2$  and HCHO co-adsorption energies ( $E_{ads}$ ) of Sc atom on the pristine and defective  $Cr_2CO_2$  at different temperatures.

|      | (O <sub>2</sub> +HCHO) <sub>ads</sub> | O <sub>2</sub> | НСНО   | MXene   | $\mathrm{E}_{\mathrm{ads}}$ |  |
|------|---------------------------------------|----------------|--------|---------|-----------------------------|--|
| 298K | -427.82                               | -8.16          | -22.03 | -393.36 | -4.27                       |  |
| 448K | -429.31                               | -8.16          | -22.03 | -390.59 | -8.53                       |  |

| 298K                                   | E <sub>OSZICAR</sub>                                                                       | $\Delta G(T)$                                                       | G                                                                            |
|----------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|
| IS                                     | -427.57981                                                                                 | 0.012069                                                            | -427.567741                                                                  |
| MS1                                    | -427.57981                                                                                 | 0.012069                                                            | -427.567741                                                                  |
| MS2                                    | -430.33246                                                                                 | 0.527995                                                            | -429.804465                                                                  |
| MS3                                    | -429.39837                                                                                 | 0.639147                                                            | -428.759223                                                                  |
| MS4                                    | -431.69418                                                                                 | 0.850447                                                            | -430.843733                                                                  |
| FS                                     | -430.61894                                                                                 | 0.807055                                                            | -429.811885                                                                  |
|                                        |                                                                                            |                                                                     |                                                                              |
|                                        |                                                                                            |                                                                     |                                                                              |
| 448K                                   | E <sub>OSZICAR</sub>                                                                       | ΔG(T)                                                               | G                                                                            |
| <b>448K</b><br>IS                      | E <sub>OSZICAR</sub><br>-406.27919                                                         | <b>ΔG(T)</b><br>-0.147076                                           | G<br>-429.056066                                                             |
| <b>448K</b><br>IS<br>MS1               | E <sub>OSZICAR</sub><br>-406.27919<br>-406.27919                                           | <b>ΔG(T)</b><br>-0.147076<br>-0.147076                              | G<br>-429.056066<br>-429.056066                                              |
| 448K<br>IS<br>MS1<br>MS2               | E <sub>OSZICAR</sub><br>-406.27919<br>-406.27919<br>-431.89099                             | ΔG(T)<br>-0.147076<br>-0.147076<br>0.185723                         | G<br>-429.056066<br>-429.056066<br>-431.705267                               |
| 448K<br>IS<br>MS1<br>MS2<br>MS3        | E <sub>OSZICAR</sub><br>-406.27919<br>-406.27919<br>-431.89099<br>-430.81743               | ΔG(T)<br>-0.147076<br>-0.147076<br>0.185723<br>0.269499             | G<br>-429.056066<br>-429.056066<br>-431.705267<br>-430.547931                |
| 448K<br>IS<br>MS1<br>MS2<br>MS3<br>MS4 | E <sub>OSZICAR</sub><br>-406.27919<br>-406.27919<br>-431.89099<br>-430.81743<br>-432.68295 | ΔG(T)<br>-0.147076<br>-0.147076<br>0.185723<br>0.269499<br>0.639670 | G<br>-429.056066<br>-429.056066<br>-431.705267<br>-430.547931<br>-432.043280 |

 Table S5 The Gibbs free energy of HCHO oxidation step by ER path.

| 298K              | Eoszicar                                             | ΔG(T)                                        | G                                                        |
|-------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|
| IS                | -427.81517                                           | 0.698875                                     | -427.116295                                              |
| MS1               | -428.36927                                           | 0.817818                                     | -427.551452                                              |
| MS2               | -431.70028                                           | 0.750686                                     | -430.949594                                              |
| MS3               | -432.39892                                           | 0.803076                                     | -431.595844                                              |
| MS4               | -432.21402                                           | 0.778342                                     | -430.843733                                              |
| FS                | -430.96599                                           | 0.696407                                     | -430.269583                                              |
|                   |                                                      |                                              |                                                          |
| 448K              | E <sub>OSZICAR</sub>                                 | ΔG(T)                                        | G                                                        |
| IS                | -429.31078                                           | 0.366372                                     | -428 944408                                              |
| MS1               |                                                      |                                              | 120.911100                                               |
| 10101             | -429.35546                                           | 0.645282                                     | -428.710178                                              |
| MS2               | -429.35546<br>-433.15537                             | 0.645282<br>0.436081                         | -428.710178<br>-432.719289                               |
| MS2<br>MS3        | -429.35546<br>-433.15537<br>-433.44335               | 0.645282<br>0.436081<br>0.538733             | -428.710178<br>-432.719289<br>-432.904617                |
| MS2<br>MS3<br>MS4 | -429.35546<br>-433.15537<br>-433.44335<br>-432.85121 | 0.645282<br>0.436081<br>0.538733<br>0.700359 | -428.710178<br>-432.719289<br>-432.904617<br>-432.150851 |

 Table S6 The Gibbs free energy of HCHO oxidation step by LH path.



S1 Density of states for Cr<sub>2</sub>CO<sub>2</sub>-MXene.



S2 Density of states for Sc/Cr<sub>2</sub>CO<sub>2</sub>-MXene.



Fig.S3 Transition state search of ER path using CI-NEB method.



Fig.S4 The configuration of HCHO oxidation step by ER path.





Fig.S5 The configuration of HCHO oxidation step by LH path.