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Computational Details

1.1MD Simulation 

Molecular dynamics simulations were performed using the Absorption and Forcite 

of Materials Studio (2017) designed by Accelrys, Inc., San Diego, CA. Ensemble 

simulations were conducted under constant particle number, constant pressure, and 

constant temperature (NPT) conditions for the constructed and minimized adsorption 

system at various temperature and pressure settings. To determine the interaction 

strengths of gas molecules on the (110) crystal plane of hybrid organic-inorganic 

perovskite, three models were established: a three-dimensional model consisting of a 

gas molecule on the hybrid organic-inorganic perovskite surface, the hybrid organic-

inorganic perovskite surface only, and the gas molecules only. The COMPASS force 

field was utilized to calculate the interaction potential energy. NPT simulations for the 

three-dimensional models were conducted for 100 ps with a time step of 1 fs. Prior to 

MD simulations, all systems underwent energy minimization for structural 

optimization. The adsorption energy of different molecules on the hybrid organic-

inorganic perovskite surface can be calculated as follows: Eadsorption = Etotal - (Esubstrate + 

Egas), where Eadsorption represents the adsorption energy, Etotal is the total system energy, 

Esubstrate is the substrate energy, and Egas is the total energy of the adsorbate gas 

molecules. Using a similar approach, the adsorption energy of different adsorbate 

molecules (including 2 H2O molecules, 5 H2O molecules, 7 H2O molecules, 10 H2O 

molecules, 5 CO molecules, 5 SO2 molecules, 5 NH3 molecules, 5 CH4 molecules, 5 



C3H6O molecules, and 5C4H10O molecules) on the surface of 1049 hybrid organic-

inorganic perovskite structures was calculated.



Figure S1. Molecular Dynamics (MD) simulation results of 10 gas molecules on the 

MAGeF3 (110) plane. The related MD Simulations were performed using Discover 

and Amorphous Cell modules of Materials Studio.



1.2 Adsorption Model crystal structure

The adsorption model voxelization process involves converting the original CIF file 

into a tensor of shape (number of element types, voxel count X, voxel count Y, voxel 

count Z) and transforming the coordinates of each atom into (voxel index Xi, voxel 

index Yi, voxel index Zi). The conversion steps are as follows: First, we obtain the 

maximum and minimum atomic coordinates in each direction (XYZ) within the entire 

adsorption model: Xmax, Xmin, Ymax, Ymin, Zmax, Zmin. Then, we create a space with 

dimensions (Xmax – Xmin), (Ymax – Ymin), and (Zmax – Zmin), and partition this space into 

small voxels, determining the number of voxels (1) in each direction X, Y, and Z, 

with ∆X, ∆Y, and ∆Z being the chosen voxel sizes. 

Number of Voxels X = (Xmax – Xmin) /∆X

Number of Voxels Y = (Ymax – Ymin) /∆Y           (1)

Number of Voxels Z = (Zmax – Zmin) /∆Z

Finally, we map the atomic coordinates to the voxel grid nodes. For each atom’s 

three-dimensional coordinates (Xi, Yi, Zi), we use the following formula to map them 

to the nearest voxel grid node, resulting in each atom’s coordinates being transformed 

into (Voxel Index Xi, Voxel Index Yi, Voxel Index Zi) (2). 

Voxel Index Xi = (Xi – Xmin)/ ∆X

Voxel Index Yi = (Yi – Ymin)/ ∆Y                  (2)

Voxel Index Zi = (Zi – Zmin)/ ∆Z

This step is crucial as it ensures that the processed adsorption model can be handled 

by three-dimensional convolutional layers.

After voxelization, crystals may have non-uniform sizes, making them unsuitable 

for direct input into the model. To address this, we've utilized the 

scipy.ndimage.zoom function to uniformly scale them to a size of 32x32x32.



Figure S2. Adsorption Model crystal structure conversion process.



1.2DNN train

All model constructions in this paper were implemented using the PyTorch 

framework.

The input for the DNN consists of the three-dimensional coordinates of three 

halogen atoms, the three-dimensional coordinates of one metal atom, the type of 

halogen atoms, the type of metal atom, and the type of organic molecule (both atom 

and molecule types are one-hot encoded). The output of the DNN is the corresponding 

adsorption energy.

The DNN training utilizes the Adam optimizer, L1 loss function, with a learning 

rate set to 0.001, and trains for 100 epochs. After training, the DNN model achieved 

Mean Absolute Error (MAE) values of 2.8271 and 4.2033 kcal/mol on the training 

and test sets, respectively. 



Figure S3.MAE of the DNN model in training and test sets of adsorption energy data.



Table S1. The DNN architecture was adopted in this study

layer type Size of output activation
In Input 44
L1 Linear 48 LeakyReLU
L2 Linear 48 LeakyReLU
L3 Linear 24 LeakyReLU
L4 Linear 12 LeakyReLU
L5 Linear 6 LeakyReLU
Out Linear 1 LeakyReLU



1.4CCMMOE design and training

The CCMMOE model is constructed based on the MMOE model [1], incorporating 

redesigned expert groups and gating networks. In the CCMMOE model, each expert 

is primarily composed of 3D convolutional layers, after each of which coordinate 

attention is applied [2]. The coordinate attention considers its positional relationships 

based on channel attention and combines primary channel attention with spatial 

attention. It’s worth noting that some modifications were made on the original 

coordinate attention to make it capable of handling volumetric data. A new dimension 

Z was added, which changes the original 2D convolution layers to 3D ones. After the 

3D convolutional layers, the data were flattened and fully connected layers were 

added. The output of each expert is one-dimensional data with a shape of 64. In this 

work, 10 experts were set up to constitute the expert group of the CCMMOE model.



Figure S4. CCMMOE model frame.



Table S2. expert net

layer type Size of output Kernel size stride activation
In Input 13*32*32*32
C1 Conv3d 256*16*16*16 2*2*2 2 LeakyReLU
CA1 Coordinate 

Attention
256*16*16*16

B1 BatchNorm3d 256*16*16*16
A1 AvgPool3d 256*8*8*8 2*2*2 2
C2 Conv3d 256*4*4*4 2*2*2 2 LeakyReLU
CA2 Coordinate 

Attention
256*4*4*4

B2 BatchNorm3d 256*4*4*4
A2 AvgPool3d 256*2*2*2 2*2*2 2
F1 Flatten 256*8
L1 Linear 256 LeakyReLU
Out Linear 64 LeakyReLU



Two gating networks, i.e., gateA and gateB, were set up in this study. The structure 

of each gating network begins with a 3D convolutional layer for dimension reduction, 

followed by a flattening step and a fully connected layer. The gateA is divided into 

two parts: gateA-1 and gateA-2. The gateA-1 and gateB have the same structure with 

an output dimension equal to the number of experts. On the other hand, gateA-2 takes 

as input the concatenation of the inputs to gateA-1 and gateB, resulting in an input 

dimension that is twice the number of experts. After passing through a fully connected 

layer and an activation function, the output dimension of gateA-2 also matches the 

number of experts.



Table S3. gateA-1

layer type Size of output Kernel 
size

stride activation

In Input 13*32*32*32
C1 Conv3d 4*16*16*16 2*2*2 2 LeakyReLU
B1 BatchNorm3d 4*16*16*16
A1 AvgPool3d 4*8*8*8 2*2*2 2
F1 Flatten 4*512
Out Linear 10 LeakyReLU

Table S4. gateA-2

layer type Size of output Kernel 
size

stride activation

In Input 20
L1 Linear 16 LeakyReLU
Out Linear 10 Softmax

Table S5. gateB

layer type Size of output Kernel 
size

stride activation

In Input 13*32*32*32
C1 Conv3d 4*16*16*16 2*2*2 2 LeakyReLU
B1 BatchNorm3d 4*16*16*16
A1 AvgPool3d 4*8*8*8 2*2*2 2
F1 Flatten 4*512
Out Linear 10 Softmax

Table S6. TowerA

layer type Size of output Kernel 
size

stride activation

In Input 640
L1 Linear 128 LeakyReLU
Out Linear 1 LeakyReLU



Table S7. TowerB

layer type Size of output Kernel 
size

stride activation

In Input 640
L1 Linear 128 LeakyReLU
Out Linear 10 LeakyReLU



The input for CCMMOE is the voxelized adsorption model (with a shape of 

13*32*32*32), and the output is the corresponding adsorption energy. For the training 

of outputA, Adam optimizer and L1 loss function were used, with a learning rate set 

to 0.0001. For outputB, Adam optimizer and CrossEntropy loss function were 

employed. After training, the MAE values for outputA on the test and training sets 

were determined to be 4.3612 and 6.3082 kcal/mol, respectively. Regarding outputB, 

the accuracy on the test and training sets were 94.8913% and 98.9068%, respectively.

1.5CCMMOE exploration

1.5.1 Influence of different voxel sizes on training results

We tested the influence of different voxel sizes on the training effectiveness of 

the CCMMOE model. The training parameters were set as follows: learning rate of 

0.00001 and 20 epochs. Voxel sizes were set to 0.5 Å, 0.75 Å, 1 Å, 1.25 Å, and 1.5 Å. 

Through experimentation, we found that setting the voxel size to 1 Å yielded the best 

overall results. When the voxel size was greater than 1 Å, although theoretically 

preserving the least amount of information and achieving better accuracy, the 

decrease in Mean Absolute Error (MAE) during training slowed down significantly, 

leading to substantial storage and computational burdens. Additionally, to maintain 

consistent model parameters, we uniformly scaled the data to a size of 32 * 32 * 32. 

Therefore, adopting smaller voxel sizes had little significance. When the voxel size 

was less than 1 Å, the MAE of the model decreased rapidly during training; however, 

compared to the 1 Å voxel size, the model ultimately achieved inferior results. Thus, 



given acceptable computational and storage capabilities, we ultimately chose 1 Å as 

the voxel size.



Figure S5. Influence of different voxel sizes on training results.



1.5.2 Comparison of expert network and CCMMOE training.

We also compared the training effectiveness between a single expert network 

and the CCMMOE model. For the single expert network, we appended two additional 

linear layers at the end to allow it to directly output without passing through OutputA. 

The learning rate was set to 0.00001, and training was conducted for 20 epochs. 

Compared to the ten expert networks in CCMMOE, the single expert network is 

lighter and easier to train; however, its final training performance is inferior to that of 

CCMMOE.



Figure S6. Comparison of expert network and CCMMOE training.



1.6SHAP calculation

The SHAP value calculation utilized the GradientShap function from the captum 

library [3], and the parameters for SHAP value computation were consistent for both 

the DNN and CCMMOE models. The baseline was set to a zero matrix with the same 

shape as the input, and stdevs were set to 0.1. During computation, SHAP values were 

only calculated for the adsorption model concerning adsorption of water molecules.

1.7SHAP results discussed

1.71 SHAP value analysis of organic molecules

In addition to halides, organic cations are also crucial components of organo-

inorganic hybrid perovskites, significantly impacting their adsorption energy. We 

conducted a SHAP value analysis on a DNN model and found that among the organic 

cations, OHNH3 has the most significant influence on increasing the adsorption 

energy, followed by commonly used methylamine and ethylamine.



Figure S7. Cationic SHAP value.



1.72CCMMOE model SHAP value display

Figure S8. MAPbI3 adsorption NH3 SHAP value distribution. The triangle represents 

the adsorbed molecule, and the circle represents the perovskite substrate. The size of 

the scatter plot represents the magnitude of the absolute SHAP values, calculated by 

the CCMMOE model.



Figure S9. MAPbI3 adsorption CO SHAP value distribution. The triangle represents 

the adsorbed molecule, and the circle represents the perovskite substrate. The size of 

the scatter plot represents the magnitude of the absolute SHAP values, calculated by 

the CCMMOE model.



Figure S10. MAPbI3 adsorption C4H10O SHAP value distribution. The triangle 

represents the adsorbed molecule, and the circle represents the perovskite substrate. 

The size of the scatter plot represents the magnitude of the absolute SHAP values, 

calculated by the CCMMOE model.



Experimental Section

The reliability of SHAP analysis was verified experimentally with nine 

MAPbX3-type perovskites prepared in this work, namely MAPbCl3, MAPbCl2.25Br0.75, 

MAPbCl1.5Br1.5, MAPbCl0.75Br2.25, MAPbBr3, MAPbBr2.25I0.25, MAPbBr1.5I1.5, 

MAPbBr0.75I2.25, and MAPbI3. To give an example, the MAPbI3 perovskite was 

prepared by spin coating a solution containing PbI2, MAI and DMSO onto an 

electrode, followed by drying at 60 °C for 20 min to evaporate the solvent (Fig. 4a). 

The structures of the perovskites were characterized and confirmed by X-ray 

diffraction (XRD) (Fig. 4b) and UV-vis absorption spectroscopy (Fig. 4c). In a typical 

process of the experiment, the perovskite samples were placed in a dark and sealed 

container under a certain voltage, and the change in the current after adding water was 

measured. Due to the significant differences in the electrical properties of the varied 

perovskites, different voltage values were applied to the samples. Once a stable 

current was achieved for each perovskite, 5 ml of water was injected into the sealed 

container, where the liquid water was evaporated into the gaseous phase with the 

equipped ceramic heating unit. Subsequently, another 5 ml of water was introduced 5 

min after the first water addition. The tests were conducted after each addition of 

water, and the experiments were repeated 3 times. Based on the obtained current 

curves for the nine perovskites at different humidity levels, the average values of the 

response rates were calculated according to the formula below: 

Iresponse rate = (Icurrent value − Iinitial value)/ Iinitial value          (1)



By mapping the average response rate, it was found that the response rate after 

the second water addition is higher than that of the first time, and it changes with the 

content of Cl, Br and I in the perovskites. More importantly, the perovskite containing 

Cl showed the lowest response rate, indicating its highest stability against water and 

the smallest adsorption energy for water molecules. On the contrary, the I-containing 

perovskite exhibited the largest response rate value and lowest stability to water. 

However, the stability of halogen-doped perovskites is always higher than that of the 

pure perovskite [4][5][6]. We also measured the PL of MAPbI3, MAPbBr3, and 

MAPbCl3 perovskites on the 0th, 2nd, 5th, and 10th days after preparation. The 

results revealed that MAPbI3 exhibited the least decrease in luminescence intensity, 

while MAPbCl3 showed the most significant decrease. These experimental results are 

consistent with the data from SHAP analysis.

Materials: All chemical reagents were purchased from commercial vendors and 

are as follows: Lead (II) iodide (PbI2, 99%, Sigma-Aldrich), Lead (II) bromide (PbBr2, 

99%, Sigma-Aldrich), Lead (II) chloride (PbCl2, 99%, Sigma-Aldrich), Methylamine 

iodide (CH6IN, 98%, Macklin), Methylamine bromide (CH6BrN, 99.5%, Macklin), 

Methylamine hydrochloride (CH6ClN, 98%, Macklin), Dimethyl sulfoxide (DMSO, 

99.8%, with molecular sieves, water ≤50 ppm, Macklin). All reagents were used as 

received without further purification, and all aqueous solutions were prepared with 

deionized water (>18 MΩ).

The synthesis of MAPbI3 is as follows: First, 0.461 grams (1 mmol) of lead (II) 



iodide powder were dissolved in 1 milliliter of dimethyl sulfoxide (DMSO) along 

with 0.159 grams (1 mmol) of methylamine iodide powder. The solution was heated 

and stirred until it became clear, and then it was filtered through a nylon 66 filter plug 

for subsequent use.

The synthesis of MAPbI2.25Br0.75，MAPbI0.75Br2.25，MAPbBr3 ，

MAPbBr2.25Cl0.75，MAPbBr1.5Cl1.5，MAPbBr0.75Cl2.25，MAPbCl3 preparation 

process is similar to the above.

Fabrication of Film and Device: First, the interdigitated electrode (with a gap 

width of 100 μm on a PET substrate) was rinsed with ethanol and thoroughly dried. 

Next, 5 μL of the prepared MAPbX3 perovskite solution was dropped onto the 

interdigitated electrode, and the electrode was further dried at 60 °C on a hotplate for 

10 minutes.

Testing environment: During the test, with ambient humidity lower than 30% 

and the temperature around 10 degrees Celsius, the perovskite film was shielded from 

light.

Characterization and Measurements: XRD patterns were characterized using a 

powder X-ray diffractometer (Empyrean, PANalytical B.V.) with Cu Kα1 radiation (λ 

= 1.5406 Å). Absorption spectra were acquired using a UV-vis spectrophotometer 

(Lambda 650S, PerkinElmer). The surface morphology was examined using a field-

emission scanning electron microscope (SU8010, HITACHI) coupled with EDS. All 



electrical measurements were carried out using a probe station coupled to a 

Keithley2450.

FigureS11. Schematic diagram of the MAPbI3 preparation process (a). XRD patterns 

(b), UV-vis spectra (c) and response rates (d) of the nine MAPbX3 type perovskites.

 



Figure S12. HRTEM micrographs of 9 kinds of MAPbX3 type perovskites.



Figure S13. 9 kinds of MAPbX3 type perovskites. Perovskite solution is spun onto a 
glass plate, and the solvent is steamed to take pictures.



Figure S14. Electrical experimental curves of 9 MAPbX3 type perovskites. Put the 

prepared perovskite device into a closed container, pass the appropriate voltage, 

record the response rate of the current over time, each time adding water interval of 5 

minutes, each time adding water of 5 microliters, the added water will be quickly 

evaporated into a gas by the ceramic heating plate in the container.



Figure S15. The PL spectra of freshly prepared MAPbI3, MAPbBr3, and MAPbCl3.



Figure S16. The luminescence intensity of MAPbI3, MAPbBr3, and MAPbCl3 
decreases over time.
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