Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting Information (ESI)

Ytterbium-nitrogen co-doped ordered mesoporous TiO₂: The innovative hetero-phase photocatalyst for harnessing solar energy in green hydrogen production[†]

Sanjeev Gupta,^a Yeonsu Kwak,^b Rayappan Pavul Raj,^{a,c} and Parasuraman Selvam*^{a,d,e}

[†]Dedicated to Professor Dr. Dionisios G. Vlachos on the occasion of his 60th birthday

^a National Centre for Catalysis Research and Department of Chemistry, Indian Institute of Technology-Madras, Chennai 600 036, India
 ^b Department of Chemical and Biomolecular Engineering, University of Delaware, 221, Academy Street, Newark, DE 19716, USA
 ^c Department of Chemistry, PSG Institute of Advanced Studies, Coimbatore 641 004, India
 ^d Delaware Energy Institute, University of Delaware, 221, Academy Street, Newark, DE 19716, USA
 ^e International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan

*Corresponding Author. Telephone: +91 -44-2257-4235/4200; E-mail: selvam@iitm.ac.in

This PDF file includes:

Tables S1-S5

Figures S1-S12

Scheme S1

Photocatalyst	$^{\dagger R_{ct}}(\Omega)$	‡C _{dl} (μF)	§V _{fb} (V vs RHE)	${}^{\P}N_D$ (cm^{-3})	sV ^{maj} (V vs RHE)	${}^{\pm}N_{D}^{maj}$ (cm^{-3})
Yb/N-TMF-127(350)	738	99.7	- 0.469	1.32 x 10 ¹⁴	- 0.765	2.36 x 10 ¹⁴
N-TMF-127(350)	746	22.9	-0.440	1.81 x 10 ¹⁴	- 0.759	2.15 x 10 ¹⁴
P-25	813	12.4	- 0.461	1.58 x 10 ¹⁵	- 0.626	2.76 x 10 ¹⁵

 Table S1.
 Electrochemical data (EIS and MS) of various titania samples.

[†]Charge transfer resistance; [‡]Double layer capacitance ($-1/2\pi f Z_{max}$); [§]Minor flat-band potential; [¶]Minor carrier density (donor density); [§]Major flat- band potential; [‡]Major carrier density (donor density).

	R_1^{\dagger}	CPE ₁ [‡]	п	R_2^{\S}	CPE_2^{\ddagger}	п	R_3^{\S}	W¶	
Photocatalyst	(Ω)	(<i>µF</i>)	(0 < n < 1)	(Ω)	(μF)	(0 < n < 1)	(Ω)	$(S.s^{1/2})$	$^{\$}\chi^{2}$
Yb/N-TMF-127(350)	0.9	31.7	0.9	320	45.6	1	362	0.02	0.000166
N-TMF-127(350)	0.8	15.9	0.9	764	0.20	1	1	0.87	0.000648
P-25	0.5	0.16	0.9	475	0.20	0.9	342	2.20E+10 [#]	0.000237

 Table S2. Equivalent circuit fitted data for various titania samples.

 $^{\dagger}R_1$ - Solution resistance; [‡]Constant phase element; [§]R₂ and R₃ - Charge transfer resistance; [¶]W-Warburg diffusion; [#]This is fitted data value, the high slope value of Nyquist tail which can be seen at low frequency.

Photocatalyst	Cocatalyst	Sacrificial agent	Light source	Hydrogen evolution $(mmol g^{-1} h^{-1})$	Ref.
Yb/N-TMF-127(350)	NIL	Methanol-water	Solar Simulator (150 W)	1.3	This work
Yb/N-TMF-108(350)	NIL	Methanol-water	Solar Simulator (150 W)	1.2	This work
N-TMF-127(350)	NIL	Methanol-water	Solar Simulator (150 W)	1.0	This work
N-TMF-108(350)	NIL	Methanol-water	Solar Simulator (150 W)	0.9	This work
TiO2 (P-25)	NIL	Methanol-water	150 W Solar Simulator	0.4	This work
TiO ₂	$WSe_{2^{+}x}$	Ethanol-water	3W-LED (365 nm)	3.8	1
TiO ₂	MoS_2	Methanol-water	3W-LED (365 nm)	2.4	2
TiO ₂	$MoS_{2^{+}x}$	Methanol-water	3W-LED (365 nm)	1.8	3
TiO ₂	MoC	Methanol-water	3W-LED (365 nm)	0.5	4
TiO ₂	Fe-Ni	Ethanol-water	Lamp (> 400 nm)	0.4	5
TiO ₂	NiS	Methanol	350 W Xe lamp	0.7	6
TiO ₂	Ni	Triethanolamine-water	UV-Visible lamp	1.2	7
TiO ₂	$Au@ReSe_{2+x}$	Triethanolamine-water	3W-LED (365 nm)	6.0	8
TiO ₂	NiS _x	Methanol-water	Xe lamp (300 W)	1.0	9
<i>h</i> -TiO ₂	CoO	Methanol-water	Xe lamp (300W)	2.6	10
TiO ₂	Cu _x P	Methanol-water	3W-LED 365 nm	1.9	11
$10Yb10Bi_2S_3/TiO_2$	Na ₂ S	Methanol-water	1000 W Xenon Lamp	0.1	12
Yb-doped TiO ₂	Pt	Methanol-water	300 W Ultra Vitalux Lamp	8.4	13
La-doped TiO ₂	Pt	Methanol-water	300 W Ultra Vitalux Lamp	7.8	13
Gd-doped TiO ₂	Pt	Methanol-water	300 W Ultra Vitalux Lamp	13.2	13

 Table S3. Recent advances in developing low-cost photocatalysts for solar hydrogen generation.

References

- 1. D. Gao, W. Zhong, X. Wang, F. Chen and H. Yu, J. Mater. Chem. A, 2022, 10, 7989–7998
- W. Wang, S. Zhu, Y. Cao, Y. Tao, X. Li, D. Pan, D. L. Phillips, D. Zhang, M. Chen, G. Li and H. Li, *Adv. Funct. Mater.*, 2019, 29, 1901958.
- 3. D. Gao, P. Deng, J. Zhang, L. Zhang, X. Wang, H. Yu and J. Yu, Angew. Chem. Int. Ed., 2023, 62, e202304559.
- 4. J. Liu, P. Wang, J. Fan and H. Yu, J. Energy Chem., 2020, 51, 253–261.
- T. Sun, J. Fan, E. Liu, L. Liu, Y. Wang, H. Dai, Y. Yang, W. Hou, X. Hu and Z. Jiang, *Powder Technol.*, 2012, 228, 210–218.
- 6. F. Xu, L. Zhang, B. Cheng and J. Yu, ACS Sustainable Chem. Eng., 2018, 6, 12291–12298.
- 7. P. D. Tran, L. Xi, S. K. Batabyal, L. H. Wong, J. Barber and J. S. Chye Loo, Phys. Chem. Chem. Phys., 2012, 14, 11596–11599.
- 8. W. Zhong, J. Xu, X. Zhang, J. Zhang, X. Wang and H. Yu, Adv. Funct. Mater., 2023, 33, 2302325.
- 9. Y. Wei, G. Cheng, J. Xiong, J. Zhu, Y. Gan, M. Zhang, Z. Li and S. Dou, J. Energy Chem., 2019, 32, 45–56.
- 10. X. Chen, B. Sun, J. Chu, Z. Han, Y. Wang, Y. Du, X. Han and P. Xu, ACS Appl. Mater. Interfaces, 2022, 14, 28945–28955.
- 11. J. Xu, W. Zhong, H. Yu, X. Hong, J. Fan, J. Yu, J. Mater. Chem. C, 2020, 8, 15816–15822.
- 12. M. Miodyńska, A. Mikolajczyk, B. Bajorowicz, J. Zwara, T. Klimczuk, W. Lisowski, G. Trykowski, H. P. Pinto, and A. Zaleska-Medynska, *App. Catal. B: Environ.*, 2020, **272**, 118962.
- 13. M. Zalas and M. La, Solar Energy Mater. Solar Cells, 2005, 89, 287.

Figure S1. Photo-electrochemical reactor set-up: (a) Schematic; (b) Experimental system.

Figure S2. (a) A schematic photocatalytic reactor set-up. (b) Photocatalytic reactor system in a solar simulator.

Figure S3. Calibration plot of hydrogen for quantitative analysis.

Figure S4. The Rietveld refined powder XRD pattern of P-25.

Figure S5. SEM image; EDX mapping and EDS spectra of Yb/N-TMF-127(350).

Figure S6. SEM image; EDX mapping and EDS spectra of Yb/N-TMF-108 (350).

EDS Layered Image 1

Yb Lα1

Ο Κα1

Figure S7. SEM image; EDX mapping and EDS spectra of Yb/N-TMF-127 (550).

EDS Layered Image 6

Yb Lα1

٦

50μm

Figure S8. SEM image; EDX mapping and EDS spectra of Yb/N-TMF-108 (650).

Г

Figure S9. TEM image of TiO_2 (P-25) catalyst.

Figure S10. Nitrogen sorption isotherm of P-25

Figure S11. EPR spectra of Yb/N-OMT.

Figure S12. EPR spectra of P-25.