

8 Figure S1. Long-term galvanostatic cycling performance of Zn||Zn symmetrical cells in electrolytes

11 Figure S2. Coulombic efficiencies of Zn||Ti asymmetric cells in electrolytes with different

¹² concentrations of NA.

- 2 Figure S3. Zn||Zn symmetric cells with ZnSO₄+NA electrolytes XRD of zinc anode surface before
- 3 and after 50 cycles.

5

6 Figure S4. The corresponding absorbed models for different situations(101).

7

9 Figure S5. The corresponding absorbed models for different situations(002).

2 Figure S6. Cyclic voltammogram curves for Zn||Zn symmetric cells with (a) ZnSO₄ electrolytes
3 and (b) ZnSO₄+NA electrolytes.

6 Figure S7. The alternating current voltammetry(ACV) measurement for Zn||Ti
7 asymmetric cells in electrolytes with/without NA.

2 Figure S8. O 1s spectra after 10 cycles at 1.0 mA cm⁻² (1.0 mAh cm⁻²) for $ZnSO_4$ +NA electrolytes.

5 Figure S9. The Raman spectra of the electrolytes with/without NA.

2 Figure S10. LSV curves of Zn anode presenting (a) HER and (b) OER in ZnSO₄ electrolytes
3 with/without NA

5

6 Figure S11. Corresponding GCD curves of the Zn||Ti cells at various cycles with (a) ZnSO₄

7 electrolytes and (b)ZnSO₄+NA electrolytes.

9 Figure S12. The Raman spectra of Zn deposits on Ti substrate in electrolytes with/without NA.

Figure S13. (a) The voltage profile of pre-cycles (ZnSO₄+NA) at 1 mA cm⁻² (1 mAh cm⁻²) followed
by 10 mA cm⁻² (1 mAh cm⁻²), insets show the amplified profile at different cycles. The
corresponding impedance spectra of the positions in (a): (b) before test, (c) after 16 h at 1 mA cm⁻²
(1 mAh cm⁻²), (d) after 15 h at 10 mA cm⁻² (1 mA h cm⁻²).

9 Figure S14. nanowire MnO₂ (a)SEM and (b)XRD.

1

2 Table S1. Calculated energies of different solvation species obtained from DFT calculations.

		E _Z (Hartree)	E _s (Hartree)	E _C (Hartree)	E _B (Hartree)	E _B (kcal/mol)
_	H ₂ O	-1819.788673	-80.456587	-1900.40954	-0.16428	-103.0873428
	NA	-1819.788673	-462.579237	-2282.645045	-0.277134	-173.90436
3						
4						

5 Table S2. Fitting results for Zn||Zn symmetric cells at different temperatures.

Symmetrical cells	Res	298.15	303.15	308.15	313.15
ZnSO ₄ electrolyte	$Rct(\Omega)$	1152	860	635.4	471.96
ZnSO ₄ +NA electrolyte	$Rct(\Omega)$	263.3	224	191	162

7 Table S3. Performance comparison of Zn symmetric cell using ZnSO₄+NA electrolyte with other

8 reported literatures.

No.	Electrolyte	Current	Capacity	Cycle	Ref.
		density	(mAh cm⁻	time	
		(mA cm ⁻	²)	(hour)	
_		²)			
1	ZnSO ₄ +NA	1	1	5200	
		2	2	1650	This work
		5	2.5	1500	
		5	5	450	
2	ZnSO ₄ +SL	0.5	0.5	600	1
3	ZnSO ₄ +Urea	1	1	700	2
4	ZnSO ₄ +TBA ⁺	2	2	300	3
5	ZnSO ₄ +CH ₃ COONH ₄	2	1	2400	4
6	Zn(OTF) ₂ +TMS	5	5	300	5
7	ZnSO ₄ +GO	1	0.5	650	6
8	ZnSO ₄ +HTCN-x	1	1	1000	7
9	ZnSO ₄ +NMP	1	1	540	8
10	ZnSO ₄ +PVDF	0.25	0.05	2000	9
11	ZnSO4+h-BN@PDA	0.5	0.5	1700	10
12	ZnSO ₄ +LAA	1	1	1200	11
13	ZnSO ₄ + AQS	5	0.5	1200	12
14	ZnSO ₄ + NH ₃ ·H ₂ O	5	5	250	13
15	ZnSO ₄ + TA-Na	0.5	0.25	1700	14
16	ZnSO ₄ +GA	1	1	2500	15

⁹

10 References

W. Zhou, M. Chen, Q. Tian, J. Chen, X. Xu, X. Han and J. Xu, *J Colloid Interface Sci.*, 2021, 601, 486-494.

- Z. Hou, M. Dong, Y. Xiong, X. Zhang, H. Ao, M. Liu, Y. Zhu and Y. Qian,
 Small, 2020, 16, e2001228.
- 3 3. A. Bayaguud, X. Luo, Y. Fu and C. Zhu, *ACS Energy Lett.*, 2020, **5**, 3012-3020.
- 4 4. C. Lin, X. Yang, P. Xiong, H. Lin, L. He, Q. Yao, M. Wei, Q. Qian, Q. Chen and
 5 L. Zeng, *Adv Sci (Weinh)*, 2022, 9, e2201433.
- 6 5. X. Zhao, X. Zhang, N. Dong, M. Yan, F. Zhang, K. Mochizuki and H. Pan,
 7 Small, 2022, 18, e2200742.
- J. Abdulla, J. Cao, D. Zhang, X. Zhang, C. Sriprachuabwong, S. Kheawhom, P.
 Wangyao and J. Qin, *ACS Applied Energy Mater.*, 2021, 4, 4602-4609.
- 10 7. R. Wang, L. Liu, S. Huang, Y. Wu, X. Chen, Z. Liang and J. Xu, *J Colloid*11 *Interface Sci*, 2023, 646, 950-958.
- T. C. Li, Y. Lim, X. L. Li, S. Luo, C. Lin, D. Fang, S. Xia, Y. Wang and H. Y.
 Yang, *Adv. Energy Mater.*, 2022, **12**, 2103231.
- 14 9. L. T. Hieu, S. So, I. T. Kim and J. Hur, Chem. Eng. J., 2021, 411, 128584.
- 15 10. K. Su, J. Chen, X. Zhang, J. Feng, Y. Xu, Y. Pu, C. Wang, P. Ma, Y. Wang and
 J. Lang, *J. Power Sources*, 2022, **548**, 232074.
- D. Zhang, J. Cao, R. Chanajaree, C. Yang, H. Chen, X. Zhang and J. Qin, ACS
 Appl Mater Interfaces, 2023, 15, 11940-11948.
- 19 12. R. Sun, D. Han, C. Cui, Z. Han, X. Guo, B. Zhang, Y. Guo, Y. Liu, Z. Weng and
 Q. H. Yang, *Angew Chem Int Ed Engl*, 2023, 62, e202303557.
- 21 13. R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong, Y. Dai, Z. Du, Z. Zhang, J. Li,
- F. Guo, X. Gao, H. Dong, J. Zhu, X. Wang and G. He, *Nano-Micro Lett.*2023,15, 81.
- 24 14. J. Wan, R. Wang, Z. Liu, L. Zhang, F. Liang, T. Zhou, S. Zhang, L. Zhang, Q.
 25 Lu, C. Zhang and Z. Guo, *ACS Nano* 2023, 17, 2, 1610-1621.
- 26 15. H. Zheng, Y. Huang, J. Xiao, W. Zeng, X. Li, X. Li, M. Wang and Y. Lin, *Chem.*27 *Eng. J.*, 2023, 468,143834.