Ab Initio Investigation of Tunable  $CO_2$  Reduction Reactions on the Two Dimensional Ferroelectric  $Y_2CO_2$ 

Mo Li, Joshua Young\* Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 10038 \*jyoung@njit.edu

Supplementary Information

| CO <sub>2</sub> | Isolated | Poled up | Poled down |
|-----------------|----------|----------|------------|
| С               | 2.040    | 0.990    | 0.943      |
| 01              | -1.009   | -1.177   | -1.205     |
| O2              | -1.004   | -1.164   | -1.220     |
| Total           | 0.027    | -1.350   | -1.483     |

Table S1. Charge transfer (eV) to CO<sub>2</sub> adsorbed on an O<sub>V</sub> on poled up and poled down Y<sub>2</sub>CO<sub>2</sub>.

| СО    | Isolated | Poled up | Poled down |
|-------|----------|----------|------------|
| С     | 1.141    | -0.072   | -0.090     |
| 0     | -1.115   | -1.180   | -1.189     |
| Total | 0.026    | -1.251   | -1.279     |

Table S2. Charge transfer (eV) to CO adsorbed on an O<sub>V</sub> on poled up and poled down Y<sub>2</sub>CO<sub>2</sub>.

| CH <sub>3</sub> OH | Isolated | Poled up | Poled down |
|--------------------|----------|----------|------------|
| С                  | 0.4569   | 0.3872   | 0.2679     |
| 0                  | -1.1125  | -1.1719  | -1.1944    |
| Н                  | 0.0251   | 0.0482   | 0.0707     |
| Н                  | 0.0298   | 0.0583   | 0.0805     |
| Н                  | 0.0579   | 0.0679   | 0.1381     |
| Н                  | 0.5759   | 0.6178   | 0.5787     |
| Total              | 0.0332   | 0.0074   | -0.0586    |

Table S3. Charge transfer (eV) to CH<sub>3</sub>OH adsorbed on an O<sub>V</sub> on poled up and poled down Y<sub>2</sub>CO<sub>2</sub>.

| CH <sub>4</sub> | Isolated | Poled up | Poled down |
|-----------------|----------|----------|------------|
| С               | -0.135   | -0.170   | -0.181     |
| Н               | 0.029    | 0.046    | 0.074      |
| Н               | 0.036    | 0.044    | 0.074      |
| Н               | 0.040    | 0.052    | -0.091     |
| Н               | 0.060    | -0.007   | 0.082      |
| Total           | 0.029    | -0.036   | -0.043     |

Table S4. Charge transfer (eV) to CH<sub>4</sub> adsorbed on an O<sub>V</sub> on poled up and poled down Y<sub>2</sub>CO<sub>2</sub>.



Figure S1. Projected density of states (PDOS) for pristine  $Y_2CO_2$ , poled up O-defect  $Y_2CO_2$  and poled down O-defect  $Y_2CO_2$ .



Figure S2. Nudged elastic band calculation of switching barrier between poled up and poled down  $O_V$  defected  $Y_2CO_2$  surface.



Figure S3. Charge densities for adsorbed CO<sub>2</sub>, CO, and methanol.



Figure S4. Reaction-energy diagram for CO<sub>2</sub> to CO reaction on a pristine Y<sub>2</sub>CO<sub>2</sub> surface.



Figure S5. Energy diagram for hydrogen evolution reaction (HER) on a defect Y<sub>2</sub>CO<sub>2</sub> surface.



Figure S6. Energy diagram for methanol formation process. The energies of  $CH_2OH$  as an alternative to  $CH_3O$  on poled up and poled down O-defect  $Y_2CO_2$  are labelled with green and yellow lines.



Figure S7. Optimized geometries of  $CH_4$  adsorbed at the poled up and poled down  $Y_2CO_2$  oxygen defect site.