Supporting information

A flame retardant poly vinyl alcohol/graphene oxide/phytic acid composite for quick response and ultra-long fire alarm

Zhihao Zhang^{*a,b*}; Zhenzhu Zhou^{*a,b*}; Junchao Huang^{*a,b*,*}; Yuhua Wang^{*a,b*,*}

^a School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China

^b Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou, 730000, China

Corresponding author email: wyh@lzu.edu.cn

Experimental section

Materials

Poly (vinyl alcohol) (1750 \pm 50) (PVA) was supplied in Sinopharm Chemical Reagent (Shanghai, China). Phytic acid ($M_W \sim 660$, 50 wt.% *aq.*) was provided by Aladdin Chemistry (Shanghai, China). Concentrated sulfuric acid (H₂SO₄, ~98 wt.%) and concentrated hydrochloric acid (HCl, 36 ~ 38 wt.%) were bought from Kelong Chemical Co., Ltd (Chengdu, China). Natural graphite, potassium permanganate (KMnO₄), sodium nitrate (NaNO₃), and hydrogen peroxide solution (H₂O₂, 30 vol.%) were gained from Pfizer Industry Inc. (Gansu, China). All chemicals were analytical grade and used without further purification.

Instruments and Measurement

The X-Ray Diffraction (XRD) patterns were measured by Rigaku D/Max-2400 X diffraction with Ni-filtered Cu $K\alpha$ radiation ($\lambda = 0.154$ nm) from 5° to 60° with a scanning speed of 15°·min⁻¹.

The Fourier transform infrared spectra (FTIR) were performed on a Nicolet NEXUS 670 (USA) spectrometer within the scanning range of $4000 \sim 400$ cm⁻¹.

Raman spectroscope (Horiba, France) was carried out to analyze the degree of graphitization of the char residues. The excitation was set to 528 nm to acquire the information in the range of $2000 \sim 500$ cm⁻¹.

A PHI-5702 photoelectron spectrometer with an Al $K\alpha$ excitation source (1.486 keV) was applied to record the X-ray photoelectron spectroscopy (XPS) spectra for the analysis of element composition and chemical structure of all samples.

A scanning electron microscope (SEM) (S-3400, Hitachi, Japan) was utilized to

investigate the micromorphological features of PVA and PGP composite films as well as their residual char layer after combustion. The composition and dispersibility of elements were characterized by energy-dispersive spectrometry (EDS) (X-Max, Oxford Instruments, UK) equipped with SEM.

The fluorescence microscopy (DSX100, Olympus, Japan) was utilized to observe the surface morphology of PVA, P_1G_1 nanocomposites and $P_1G_1P_{0.8}$ nanocomposites by the bright and dark field, and the green light mode with a wavelength range of 460 ~ 550 nm.

The 3D measurement laser microscope (OLS5000, Olympus, Japan) is used to observe and measure the surface roughness of the PGP nanocomposites.

Thermogravimetric analysis (STA PT 1600, Linseis, Germany) was used to analyze the thermal stability at a heating rate of 15 °C·min⁻¹ from room temperature to 800 °C in N_2 .

A Microscale Combustion Calorimeter (MCC) from Fire Test Technology Limited of the UK was used to analyze fire retardant performance. The weight of all samples was $4.5 \sim 5$ mg. All samples were heated from 150 to 600 °C at a heating rate of 1 °C/s.

The universal testing machine (CMT 8502, Instron, USA) was used to measure the tensile strength of PVA and PGP composite films. The samples were cut into dumbbell shapes with a width and length of 5 mm and 40 mm according to GB/T 1040.3-2006 standard. The tensile speed was set as 50 mm/min. Young's modulus *E* was calculated from the initial linear region of the tensile stress-strain curves. Herein, σ_b and ε_b referred to the tensile stress and the strain at break, respectively. The work of fracture (*W_f*) was calculated according to the mathematic area of the tensile stressstrain curve to demonstrate the toughness of the PVA and PGP composite films.

In the fire warning test, the fire alarm system, composed of a PGP

nanocomposites strip, LED lamp, power source and some wires, is built according the circuit diagram of the Fig. 5a. For the burning situation, the samples were exposed directly to ethanol flame for some time and then the warning trigger and duration time was recorded. For the low temperature heating situation, a hot plate (JF-956A, Jftoois, China) was employed to exert the different temperatures (100, 150, 200, 250, 300, and 350 °C) on the PGP nanocomposite films or the cotton fabric coated with $P_1G_1P_{0.8}$. Then the samples were taken down to determine whether they can light up the LED lamp at an appropriate time and the time was recorded. Meanwhile, the electrical resistance changing curve of the samples during heating or burning was recorded with a digit multimeter (VC990C+, Victor Instrument, China).

Supplementary Figures and Tables

Fig. S1 The high-resolution XPS spectra of C1s of P_1G_1 (a), C1s of $P_1G_1P_{0.8}$ (b), P2p of $P_1G_1P_{0.8}$ (c), O1s of P_1G_1 (d) and O1s of $P_1G_1P_{0.8}$ (e).

Fig. S2 The surface roughness (Sa) of P_1G_1 (a), $P_1G_1P_{0.2}$ (b), $P_1G_1P_{0.4}$ (c), $P_1G_1P_{0.6}$ (d), and $P_1G_1P_{0.8}$ (e) nanocomposites.

Fig. S3 The EDS spectra and element contents of P_1G_1 (a), $P_1G_1P_{0.2}$ (b), $P_1G_1P_{0.4}$ (c), $P_1G_1P_{0.6}$ (d), and $P_1G_1P_{0.8}$ (e) nanocomposites.

Fig. S4 The images of EDS mapping for: $(a_1, a_2) P_1G_1$, $(b_1-b_3) P_1G_1P_{0.2}$, $(c_1-c_3) P_1G_1P_{0.4}$, and $(d_1-d_3) P_1G_1P_{0.6}$ nanocomposites.

Fig. S5 The snapshots of P_1G_1 (a), $P_1G_1P_{0.2}$ (b), $P_1G_1P_{0.4}$ (c) and $P_1G_1P_{0.6}$ (d) nanocomposites during combustion process.

Fig. S6 EDS spectra and element content of char residues of each PGP sample.

Fig. S7 The high-resolution XPS spectra for the char residue of P_1G_1 and $P_1G_1P_{0.8}$ nanocomposites.

100°C

1**50°**℃

а		600s Fail	120Us Fail	b	P ₁ G ₁ -	Fail	T200s
	P ₁ G ₁ P _{0.2} -	Fail	Fail,		P ₁ G,2 _{0.2} 4	6600 150 66005 An He	
	P ₁ G ₁ P _{0.4} ⁴	600s more fail	12200s		P ₁ G ₂ E _{0.4}	5405 And	12005 at 12
	P ₁ G ₁ P _{0.6}		600s		P ₁ G ₁ P _{2.6}		BODS
	P ₁ G ₁ P _{0.8}		600 s			105	600s

200°C

250°C

Fig. S8 The snapshots of the fire warning process of PG and PGP nanocomposites at a relatively low temperature: (a) 100 °C, (b) 150 °C, (c) 200 °C, (d) 250 °C, (e) 300 °C, and (f) 350 °C.

Fig. S9 The fire warning process snapshots of different-sized $P_1G_1P_{0.8}$ nanocomposite film under fire attack.

Fig. S10 The warning process of $P_1G_1P_{0.8}$ nanocomposites (size:0.8 × 4 cm²) under 150 and 200 °C concentrated air heating using a nozzle with a diameter of 0.5 cm.

Fig. S11 (a) The images of char layers of pure cotton, cotton coated with P_1G_1 , and cotton coated with $P_1G_1P_{0.8}$ after the combustion test. The HRR (b) and THR (c) curves of pure cotton, cotton coated with P_1G_1 , and cotton coated with $P_1G_1P_{0.8}$.

Fig. S12 The fire warning process of cotton fabric coated with $P_1G_1P_{0.8}$ under different temperatures.

Table S1. The fitted chemical bond modes and their binding energy and percentagein the high-resolution C1s and P2p spectra of P_1G_1 and $P_1G_1P_{0.8}$ before and after

Sample/		Before combustion		After combustion			
Spectral line	Chemical bonds	Binding energy (eV)	Percentage (%)	Chemical bonds	Binding energy(eV)	Percentage (%)	
	С(=О)-О	289.0	1.72	С(=О)-О	288.8	4.49	
	C=O	286.3	9.93	C=O	286.7	7.79	
P ₁ G ₁ C1s	С–О	285.9	15.01	С–О	285.1	40.50	
015	С-С	285.0	34.17	С–С	284.9	20.05	
	C=C	284.7	39.17	C=C	284.2	27.17	
	C(=O)-O	289.1	0.62	С(=0)-О	289.1	2.71	
	C=O	287.0	10.45	С=О	287.9	3.44	
$P_1G_1P_{0.8}$	С–О	286.2	29.86	С–О	285.3	33.20	
C1s	С-С	284.8	31.44	С–С	284.7	27.72	
	C=C	284.4	18.82	C=C	284.0	25.60	
	С-О-Р	286.0	8.81	С–Р	286.6	7.33	
	P=O	133.8	36.76	Р=О	135.2	34.33	
P ₁ G ₁ P _{0.8} P2n	Р-О	134.8	25.26	Р-О	134.4	34.38	
- - r	Р-О-С	134.5	37.98	Р-С	133.7	31.29	

combustion.

Sample	σ_b (MPa)	$arepsilon_b$ (%)	E (GPa)	$W_f(\mathbf{MJ}\cdot\mathbf{m}^{-3})$
PVA	60 ± 1	217 ± 5	1.5 ± 0.08	115 ± 5
P_1G_1	121 ± 3	8 ± 1	2.2 ± 0.10	10 ± 2
$P_1G_1P_{0.2}$	79 ± 2	28 ± 4	1.8 ± 0.14	21 ± 2
$P_1G_1P_{0.4}$	68 ± 2	75 ± 2	0.8 ± 0.07	43 ± 4
$P_1G_1P_{0.6}$	64 ± 1	247 ± 3	0.5 ± 0.06	136 ± 3
$P_1G_1P_{0.8}$	55 ± 3	357 ± 9	0.2 ± 0.05	167 ± 4

Table S2. Summary of the mechanical strength of PVA and PGP composite films.

PVA composite films	E (GPa)	$W_f(\mathbf{MJ}\cdot\mathbf{m}^{-3})$	Dosage (wt%)	Reference
GO/PVA-1	5.8	0.9	95.0	[1]
RGO/PVA	10.4	2.5	80.0	[1]
GO/PVA-2	36.4	0.1	60.0	[2]
TiO ₂ -GO-MMT/PVA	5.2	1.9	50.0	[3]
Al ₂ O ₃ -GO/PVA	9.0	9.2	39.0	[4]
AOPA/PVA	0.4	80.2	30.0	[5]
sucrose-g-BNNS/PVA	1.7	8.4	20.0	[6]
Nanoclay/PVA	0.2	95.9	10.0	[7]
TE/PVA	4.2	250.8	5.0	[8]
BP-sucrose(N)/PVA	1.2	46.1	0.5	[9]
OH-BN/PVA	0.4	133.4	0.2	[10]
DGNS/PVA	1.5	4.5	0.1	[11]
PA-GO/PVA	0.2	167.1	64.8	This work

Table S3. The mechanical comparation with reported PVA composite films regarding their toughness and modulus.

Sample	T _{dep} (°C) ^a	<i>T</i> _{max} (°C) ^{<i>b</i>}	T _{50%} (°C) ^c	$R_{\rm dpm}$ (%·°C ⁻¹) ^d	Char residues (wt.%)
PVA	230	270	281	1.13	8
P_1G_1	245	333	330	0.63	9
$P_1G_1P_{0.2}$	195	223	436	0.62	34
$P_1G_1P_{0.4}$	164	193	438	0.59	35
$P_1G_1P_{0.6}$	163	185	458	0.57	37
$P_1G_1P_{0.8}$	162	180	525	0.52	38

Table S4. TG data of PVA and its composites under N_2 atmosphere.

^{*a*} The temperature started to decompose.

^b The temperature reached the maximum decomposition rate.

^c The temperature reached a weight loss of 50%.

^{*d*} The maximum weight loss rate at T_{max} .

Sample	<i>T</i> _p (°C) ^{<i>a</i>}	pHRR (W·g ⁻¹)	HRC [J·(g·K) ⁻¹]	THR (kJ·g ⁻¹)
PVA	275	529.9 ± 1.8	508.3 ± 6.9	23.0 ± 0.2
P_1G_1	364	159.6 ± 1.2	141.8 ± 4.8	23.9 ± 0.2
$P_1G_1P_{0.2}$	460	122.5 ± 1.7	108.9 ± 5.7	12.6 ± 0.3
$P_1G_1P_{0.4}$	454	97.8 ± 0.8	89.1 ± 3.8	10.8 ± 0.1
$P_1G_1P_{0.6}$	450	76.7 ± 1.5	67.5 ± 4.1	10.0 ± 0.1
$P_1G_1P_{0.8}$	445	60.4 ± 0.9	51.3 ± 5.6	7.7 ± 0.1

Table S5. Summary of MCC data of PVA and PGP composites.

^{*a*} The temperature reached peak heat release rate (pHRR).

Sample	Electrical resistivity (Ω·m)							
Combustion time (s)	0	2	4	6	8	10	12	
P_1G_1	2.4×10^9	N/A ^a	N/A	N/A	N/A	N/A	N/A	
$P_1G_1P_{0.2}$	8.6 × 10 ⁵	4.5×10^{4}	5.5×10^{3}	2.1 × 10 ³	1.4×10^{3}	$7.9 imes 10^2$	$7.9 imes 10^2$	
$P_1G_1P_{0.4}$	3.7×10^{5}	3.1×10^{4}	4.8×10^{3}	1.5×10^{3}	1.2×10^{3}	$7.9 imes 10^2$	$7.9 imes 10^2$	
$P_1G_1P_{0.6}$	$8.3 imes 10^4$	2.2×10^4	3.1 × 10 ³	1.2×10^{3}	9.4 × 10 ²	$7.9 imes 10^2$	$7.9 imes 10^2$	
$P_{1}G_{1}P_{0.8}$	$6.9 imes 10^4$	1.3×10^{4}	1.9 × 10 ³	1.1 × 10 ³	7.9×10^2	7.9×10^2	7.9×10^{2}	

Table S6. The electrical resistivity of PG and PGP nanocomposites in different combustion times.

^a The sample was burned to highly disintegrate and was unable to measure the resistivity.

Sample	Response time (s)						
Temperature	100°C	150°C	200°C	250°C	300°C	350°C	
P_1G_1	Fail ^a	Fail	120	60	22	10	
$P_1G_1P_{0.2}$	Fail	660	40	24	10	6	
$P_1G_1P_{0.4}$	Fail	540	16	10	7	5	
$P_1G_1P_{0.6}$	40	35	10	8	6	5	
$P_1G_1P_{0.8}$	20	10	8	6	5	4	

Table S7. The response time of different samples at different temperatures.

^{*a*} No electric response.

Sample	pHRR (W·g⁻¹)	<i>T</i> _p (°C)	HRC [J·(g·K) ⁻¹]	THR (kJ·g ⁻¹)	Char residues (wt.%)
Cotton	345.6 ± 3.8	388	334.8 ± 2.9	19.2 ± 0.2	3
Cotton-P ₁ G ₁	296.1 ± 3.2	387	288.7 ± 4.7	16.6 ± 0.2	5
$Cotton-P_1G_1P_{0.8}$	87.7 ± 4.9	278	81.4 ± 3.6	6.9 ± 0.1	33

 Table S8. MCC data of cotton and coated cotton.

Reference

[1] Y.Q. Li, T. Yu, T.Y. Yang, L.X. Zheng, K. Liao, Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties, Advanced Materials 24 (2012) 3426-3431.

[2] K.W. Putz, O.C. Compton, M.J. Palmeri, S.T. Nguyen, L.C. Brinson, High-Nanofiller-Content Graphene Oxide-Polymer Nanocomposites via Vacuum-Assisted Self-Assembly, Advanced Functional Materials 20 (2010) 3322-3329.

[3] J. Zhang, L. Zhang, C. Li, Modified TiO₂@graphene oxide and montmorillonite synergistically enhanced multifunctional nanocomposite films, Polymer Composites 42 (2021) 2511-2522.

[4] J. Wang, J. Qiao, J. Wang, Y. Zhu, L. Jiang, Bioinspired Hierarchical Alumina-Graphene Oxide-Poly(vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness, ACS Applied Materials & Interfaces 7 (2015) 9281-9286.

[5] S. Peng, M. Zhou, F. Liu, C. Zhang, X. Liu, J. Liu, L. Zou, J. Chen, Flameretardant polyvinyl alcohol membrane with high transparency based on a reactive phosphorus-containing compound, Royal Society Open Science 4 (2017) 170512.

[6] S. Chen, R. Xu, J. Liu, X. Zou, L. Qiu, F. Kang, B. Liu, H.M. Cheng, Simultaneous Production and Functionalization of Boron Nitride Nanosheets by Sugar-Assisted Mechanochemical Exfoliation, Advanced Materials 31 (2019) e1804810.

[7] N. Abu-Thabit, A.S. Hakeem, K. Mezghani, E. Ratemi, M. Elzagheid, Y. Umar, A. Primartomo, S. Al Batty, A.K. Azad, S. Al Anazi, A. Ahmad, Preparation of pH-Indicative and Flame-Retardant Nanocomposite Films for Smart Packaging Applications, Sensors (Basel) 20 (2020).

[8] W. Xie, Q. Bao, Y. Liu, H. Wen, Q. Wang, Hydrogen Bond Association to Prepare Flame Retardant Polyvinyl Alcohol Film with High Performance, ACS Applied Materials & Interfaces 13 (2021) 5508-5517.

[9] J. Guo, L. Yang, L. Zhang, C. Li, Simultaneous exfoliation and functionalization of black phosphorus by sucrose-assisted ball milling with NMP intercalating and preparation of flame retardant polyvinyl alcohol film, Polymer 255 (2022) 125036.

[10] W. Cai, D. Zhang, B. Wang, Y. Shi, Y. Pan, J. Wang, W. Hu, Y. Hu, Scalable one-step synthesis of hydroxylated boron nitride nanosheets for obtaining multifunctional polyvinyl alcohol nanocomposite films: Multi-azimuth properties improvement, Composites Science and Technology 168 (2018) 74-80.

[11] M. Qiu, D. Wang, L. Zhang, M. Li, M. Liu, S. Fu, Electrochemical exfoliation of water-dispersible graphene from graphite towards reinforcing the mechanical and flame-retardant properties of poly (vinyl alcohol) composites, Materials Chemistry and Physics 254 (2020) 123430.