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Table S1: Methane conversions and major product selectivities (S > 1 %) under different MDA reaction 

conditions for 6Mo/HZSM-5 and 6Mo1Nb/HZSM-5. Values are given as arithmetic means of 12 

measurements over 360 min of reaction. 

   mean conversions X and product selectivities S [%] 

Catalyst 
T 

[°C] 

GHSV       

[SCC gcat
-1 h-1] 

X 

[CH4] 

S 

[C2H4] 

S 

[C2H6] 

S 

[C6H6] 

S 

[C7H8] 

S 

[C10H10] 

S 

[coke] 

6Mo 

700 1600 8.42 4.30 1.81 57.23 3.31 12.36 20.17 

700 3200 6.25 7.81 2.14 60.36 4.40 8.75 15.21 

700 4800 5.06 10.80 2.19 54.38 3.35 4.16 23.91 

650 3200 4.41 5.53 2.95 53.24 3.66 7.89 25.34 

600 3200 2.75 4.83 4.11 45.01 3.27 7.08 30.15 

6Mo1Nb 

700 1600 8.39 4.27 1.82 57.80 3.27 12.29 19.66 

700 3200 6.43 7.58 2.16 61.01 4.44 8.97 14.49 

700 4800 5.10 10.87 2.26 58.67 3.48 4.35 19.17 

650 3200 4.51 5.33 2.91 55.74 3.66 8.39 22.63 

600 3200 2.63 4.69 4.36 49.53 3.37 8.40 23.65 
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Table S2: TGA/DSC measurement results of spent 6Mo/HZSM-5 and 6Mo1Nb/HZSM-5 catalysts after 

reaction at different reaction conditions for 360 min on stream. Mass losses refer to change in sample 

mass from 300-700 °C to omit adsorbed species like water.  

Catalyst Treact [°C] GHSV [SCC gcat
-1 h-1] DSC peak [°C] Mass loss [%] 

6Mo 700 3200 464.7 4.25 

6Mo1Nb 700 3200 469.4 4.13 

6Mo 700 1600 464.1 2.21 

6Mo1Nb 700 1600 468.1 1.52 

6Mo 700 4800 466.9 4.07 

6Mo1Nb 700 4800 467.5 4.62 

6Mo 650 3200 432.6 3.37 

6Mo1Nb 650 3200 443.5 2.84 

6Mo 600 3200 421.4 3.22 

6Mo1Nb 600 3200 428.9 2.54 
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Table S3: N2 sorption characteristics (specific surface area SBET, micropore area Smicro, external surface 

area Sext as well as total pore volume Vtotal and micropore volume Vmicro) for the catalysts at different 

stages. “Fresh” denotes samples after calcination but before reaction, “spent” after 360 min of reaction 

(700 °C, 3200 mL gcat
-1 h-1) and “reg.” after four reaction-regeneration cycles (total time on stream 24 h). 

Catalyst SBET [m2 g-1] Smicro [m2 g-1] Sext [m2 g-1] Vtotal [mL g-1] Vmicro [mL g-1] 

6Mo fresh 328 280 48 0.264 0.118 

6Mo1Nb fresh 318 260 58 0.242 0.110 

6Mo spent 273 241 32 0.200 0.096 

6Mo1Nb spent 271 242 29 0.183 0.097 

6Mo reg. 253 224 29 0.201 0.092 

6Mo1Nb reg. 280 250 30 0.195 0.102 
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Table S4: Surface elemental compositions of 6Mo1Nb/HZSM-5 determined by in situ NAP-XPS in an 

atmosphere of 90 % CH4 / 10 % N2 (total pressure 2 mbar) unless specified otherwise. Times are 

measured after reaching 627 °C to represent time under reaction conditions. Values are given in at.%; 

Al was not considered in the quantification. Nbx+ refers to the Nb species with higher binding energy 

compared to Nb5+ (see also Figures 7 and S19). As reported previously, the reduced pressure employed 

during NAP-XPS is likely the cause of the increase in absolute surface concentration of Mo compared 

to our ex situ samples.1, 2 

Conditions C Si O Mo6+ Mo5+ Mo4+ Mo2+ Nb5+ Nbx+ Nb4+ 

127 °C, N2 4.2 29.2 62.7 3.1 0.19 0 0 0.72 0 0 

127 °C 7.4 28.0 60.6 2.4 0.82 0 0 0.75 0 0 

627 °C, 0.2 h 6.3 25.9 60.3 1.6 1.4 3.9 0 0.48 0.08 0.05 

627 °C, 2.2 h 9.0 25.6 56.8 1.6 0.51 6.0 1.0 0.32 0.16 0.13 

627 °C, 5.4 h 9.6 23.9 54.0 1.3 0.53 6.5 3.6 0.30 0.18 0.05 
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Figure S1: Experimental setup used in performing the catalytic dehydroaromatization measurements. 
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Figure S2: Methane conversions and yields of benzene and naphthalene from MDA reproducibility 

experiments performed on 6Mo/HZSM-5 under the same reaction conditions (300 mg catalyst, 

3200 SCC gcat
-1 h-1, 700 °C).  
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Figure S3: Temperature-programmed ammonia desorption (NH3-TPD) measurements on the HZSM-5 

support as well as the 6.3 wt.% Mo/HZSM-5 (6Mo) and 6.3 wt.% Mo + 1 wt.% Nb/HZSM-5 (6Mo1Nb) 

catalysts. 
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Figure S4: normalized X-ray diffraction (XRD) patterns (obtained with Cu Kα radiation) of HZSM-5 

support as well as fresh 6Mo/HZSM-5 and 6Mo1Nb/HZSM-5 catalyst samples. 
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Figure S5: benzene yields over time for MDA on a selection of promoted 6Mo/HZSM-5 catalysts. 

Reaction conditions: 700 °C, 300 mg catalyst, 90 % CH4 + 10 % N2, 3200 SCC gcat
-1 h-1. 
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Figure S6: molar amounts of methane converted to different product categories during 360 min of MDA 

reaction (a) and amounts of benzene (b) and naphthalene (c) with different space velocities. Values were 

calculated from the yields of the respective products.   
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Figure S7: methane conversions over time for MDA on 6Mo/HZSM-5 and 6Mo1Nb/HZSM-5 catalysts 

at different temperatures. Reaction conditions: 300 mg catalyst, 90 % CH4 + 10 % N2,          

3200 SCC gcat
-1 h-1. 
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Figure S8: benzene (a) and naphthalene yields (b) over time for MDA on 6Mo/HZSM-5 and 

6Mo1Nb/HZSM-5 catalysts at different temperatures. Reaction conditions: 300 mg catalyst, 90 % CH4 

+ 10 % N2, 3200 SCC gcat
-1 h-1. 
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Figure S9: Molar amounts of methane converted to different product categories during 360 min of 

MDA reaction (a) and amounts of benzene (b) and naphthalene (c) with different reaction temperatures. 

Values were calculated from the yields of the respective products.  
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Figure S10: CO selectivities over time for MDA on 6Mo/HZSM-5 and 6Mo1Nb/HZSM-5 catalysts at 

different temperatures. Reaction conditions: 300 mg catalyst, 90 % CH4 + 10 % N2, 3200 SCC gcat
-1 h-1. 
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Figure S11: benzene yield over time for MDA over 6Mo/HZSM-5 and 6Mo1Nb/HZSM-5 catalysts in 

subsequent reaction-regeneration cycles. Reaction conditions: 700 °C, 300 mg catalyst, 90 % CH4 + 

10 % N2, 3200 SCC gcat
-1 h-1. Regeneration: 450 °C, air, 1100 SCC gcat

-1 h-1, 45 min. 
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Figure S12: TGA (black) and DSC (blue) curves of fresh 6Mo/HZSM-5. The observed mass loss is 

related to atmospheric water adsorbed on the surface, inside the pore system and on acidic sites.3, 4 

  



S20 

 

 

 

 

Figure S13: TGA (top curves) and DSC (bottom curves) measurements on spent 6Mo/HZSM-5 and 

6Mo1Nb/HZSM-5 after reaction for 360 min. Reaction conditions: 700 °C, 300 mg catalyst, 90 % CH4 

+ 10 % N2, 4800 SCC gcat
-1 h-1, 1 atm.  
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Figure S14: TGA of 6Mo/HZSM-5 and 6Mo1Nb/HZSM-5 after four reaction / regeneration cycles (total 

TOS 24 h). After the fourth reaction run, a final regeneration procedure was performed. 
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Figure S15: Additional overview STEM micrographs of the fresh (a: bright field (BF); b: dark field 

(HAADF)) and higher resolution images (c: BF; d: HAADF) of the fresh 6Mo1Nb/HZMS-5 catalyst.  
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Figure S16: STEM micrograph (a) and corresponding EDS maps (b: Mo L; c: Nb K; d: Al K; e: Si 

K f: overlay of O, Si, Al; Mo and Nb) of the spent 6Mo1Nb/HZSM-5 catalyst after reaction for 

360 min on stream at 700 °C. 
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Figure S17: Additional overview STEM micrographs (a: bright field (BF); b: dark field (HAADF)) and 

higher resolution images (c: BF; d: HAADF) of the spent 6Mo1Nb/HZMS-5 catalyst after reaction for 

360 min on stream at 700 °C.  
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Figure S18: XRD patterns (obtained with Cu Kα radiation) of fresh 6Mo/HZSM-5 (a) and 

6Mo1Nb/HZSM-5 (b), spent 6Mo/HZSM-5 (c) and 6Mo1Nb/HZSM-5 (d) as well as regenerated 

6Mo/HZSM-5 (e) and 6Mo1Nb/HZSM-5 (f) catalyst samples. Intensities were not normalized. 
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Figure S19: High resolution BF-STEM micrograph of the spent 6Mo1Nb/HZMS-5 catalyst showing 

the overgrowth of a thin carbon layer on the surface of MoNb nanoparticles (see additional discussion 

on the evaluation in Ref. 1). 

  



S27 

 

 

 

 

Figure S20: STEM micrographs of the regenerated 6Mo1Nb/HZMS-5 catalyst (a: bright field (BF); b: 

dark field (HAADF)), and (c) the corresponding particle size distribution.  
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Figure S21: STEM micrographs of the regenerated 6Mo/HZMS-5 catalyst (a: bright field (BF); b: dark 

field (HAADF)), and (c) the corresponding particle size distribution.  
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Figure S22: N2 sorption isotherms recorded according to the BET method. Top: fresh (a), spent 

(b) and regenerated (c) 6Mo/HZSM-5; bottom: fresh (d), spent (e) and regenerated (f) 

6Mo1Nb/HZSM-5. Calculated characteristics like specific surface areas and micropore 

volumes are given in Table S3. 
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Figure S23: Recorded temperature-programmed reduction (TPR) curves in 5 % H2/N2 for fresh 

6Mo/HZSM-5 and 6Mo1Nb/HZSM-5 catalysts. 
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Figure S24: Normalized X-ray photoelectron spectra (XPS) for the Mo 3d level of 6Mo/HZSM-5 and 

6Mo1Nb/HZSM-5 catalysts after four reaction / regeneration cycles. Reaction conditions: 700°C, 300 

mg catalyst, 90 % CH4 + 10 % N2, 3200 SCC gcat
-1 h-1, 6 h; Regeneration conditions: 450°C, air, 1100 

SCC gcat
-1 h-1, 45 min. 
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Figure S25: XPS for the Nb 3d level of 1Nb/HZSM-5 before and after reaction with methane. Reaction 

conditions: 700 °C, 300 mg catalyst, 90 % CH4 + 10 % N2, 3200 SCC gcat
-1 h-1, 6 h. Intensities were not 

normalized. Dashed arrows were added as a visual guide. 
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Figure S26: In situ collected Nb 3d spectra at different times (a: time (I) - 55 min @ 127 °C; b: time 

(II) - 2.0 h @ 627 °C; c: time (III) - 7.2 h @ 627 °C) during the NAP-XPS study of 6Mo1Nb/HZSM-5 

at a total pressure of 2 mbar in the reaction atmosphere 90 % CH4 / 10 % N2. Times are given in relative 

time (see Figure 8e in the main manuscript). 
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Figure S27: derivative XANES spectra of selected Mo reference materials (see further information on 

evaluation of the spectra in Ref. 2. 
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