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1. Materials:

Analytically pure nickel nitrate hexahydrate (Ni(NOs)2:6H20), magnesium nitrate hexahydrate
(Mg(NO3)2:6H20) and ferric nitrate nine hydrate (Fe(NO3)3;-9H20) from Aladdin. The sodium carbonate and
sodium bicarbonate are both 99.9% pure from Titan. Copper tetrasulfonate phthalocyanine (CuPcS) from Shanghai

Yuanye is of superior purity. The purity of anhydrous ethanol and methanol is 95% and 99% respectively.

2. Experimental section
2.1 Electrochemical measurement:

A 10 mg catalyst sample was dispersed in 485 pl of deionized water, 485 pl of ethanol, and 30 pul of Nafion
was added to ultrasonically disperse for 10 min. Then the dispersion was uniformly applied on the glassy carbon
electrode to form a sample film, which was ready for measurement. A three-clectrode system with a rotating ring
disk, in which the counter and reference electrodes were graphite and saturated glycury electrodes, respectively,
and the electrolyte solution was 0.1 M Na2SOs (pH = 6.8). Dark conditions were tested under alternating voltage
only, and light conditions were introduced with a 300 W xenon lamp. Electrochemical impedance spectroscopy
(EIS) test, transient photocurrent corresponding, Mott-Schottky curves were studied with an electrochemical
workstation (660E, Shanghai C&H Instruments).

2.2 Photocatalytic COz reduction measurement:

30 mg of photocatalyst was dispersed in 30 ml of deionized water and 5 ml of triethanolamine ultrasonicated
for 30 min. Then the dispersion was poured into a 100 ml quartz reaction cell, sealed and continuously ventilated
with high purity CO2 gas for 30 min. 300 W xenon lamp was used for overhead illumination, and condensed water
was used to keep the whole catalytic reaction at room temperature. The headspace gas products were monitored

every 1 h using gas chromatography (GC-7920, TDX-01) with flame ionization detector (FID) and N2 as the



carrier gas. To ensure the accuracy of the photocatalytic measurement data, at least three parallel experiments were
performed for each photocatalyst. For the stability experiments of the photocatalysts, four experiments were
performed under the same test conditions as above. Isotope experiments of CO2 were performed by drumming in
13COs gas and analyzed by gas-phase mass spectrometry (GCMS-QP2020).

2.3 In-situ Fourier transform infrared spectroscopy measurement (in-situ FTIR):

Using an American Nicolet 6700 infrared spectrometer equipped with a BaF2 window and an MCT detector,
the instrument has a measurement range of 4000 ~ 400 cm™. The measurements were performed in diffuse
reflection mode.

Sample pretreatment: The photocatalyst was pretreated using high purity Ar and programmed warming to
remove the adsorbed CO2 and H20 on the surface. To be specific, the powder photocatalyst was placed in the
in-situ cell and flattened it. Ar was continuously introduced and maintained at a ramp rate of 10°C/min from 25°C
to 100 °C for 40 min. Subsequently, it was left to cool to room temperature and a blank background was collected.

CO:z in-situ reaction operation: High-purity COz and trace water were blown into the in-situ reaction cell by
the bubbling method, and the gas flow rate of CO2 was 10 ml/min. The first spectrum was collected and recorded
as 0 min, followed by the top illumination of the in-situ cell with 300 W xenon lamp. The spectrum was collected
at an interval of 2 min, and the reaction was carried out for 30 min. In order to keep the temperature of the in-situ

cell at room temperature, the whole reaction was maintained by condensing circulating water.

3. Computational Methods

The spin-polarized density functional theory (DFT) calculations were performed at the level of generalized
gradient approximation (GGA) Perdew-Burke-Ernzerhof (PBE) through the CASTEP module in Materials Studio
5.5 (Accelrys software Inc., San Diego, CA). The ultrasoft pseudopotentials were used to characterize the ionic
cores of Ni, Cu, O. The cut-off energy and k-points were set as 400 eV and 1 x 1 x 1, respectively. BFGS geometry
scheme was used to search the minimum point of the potential energy surface. The three convergence criteria of
geometric optimization are as follows: (1) the energy tolerance of 1x10-5 eV/atom; (2) maximum displacement

tolerance of 1x1073A; (3) maximum force tolerance of 3x102 eV/A.

3.1 Calculation details:

Kubelka-Munk formula and Tauc's plot to estimate the band gap as follow:

(ahv)''" = A (hv - Eg)

Calculate (ehv)"" and hv respectively, where for the direct band gap n = 1/2 and for the indirect band gap n =
2. By plotting /v and (ahv)' as transverse and vertical coordinates, and extrapolating from the x-axis intercept, the
band gap energy was obtained. Among them, 4, 4, o, v, and Eg were proportionality constant, Plank constant,
absorption coefficient, light frequency, and band gap energy, respectively.

The valence band potential (Evs) can be calculated as:

Eg=Ecs— Ecs
Calculations based on the escape work (@), secondary electron cutoff edge (Ecuwofr) and valence band top

position (EvsF) are as follows, where the light source is He 1, the hv is 21.22 eV.

EYHoMo-Cupes = - IP = - (@ + EveF) = - (hv — Ecutotr + EvaF)

ENHEoMOo-cupes = -4.5 — EY*°HOMO-Cupcs



Time-resolved photoluminescence (TRPL) spectra and the transient absorption spectra (TAS) were used to get

time decay curves. The decay curves can be fitted by the multi-exponential equation below:[1]
Iy = lo + AgexpCY™) + A expt/T2)

The average lifetimes (1a) can be calculation as follow:

A1T12 + A2T22

Ty = — =
@ 7 AT + AT,

Table S1. Different mole ratio of NMF-LDHs tested by ICP-AES.

mean value/(ppm) standard deviation/(ppm)
Fe Ni Mg Fe Ni Mg
1:1:1 1.125 1.321 1.089 0.015 0.033 0.013
2:1:1 2.238 1.115 0.996 0.011 0.021 0.025
1:2:1 1.052 2.038 1.091 0.0179 0.008 0.022

Table S2. Metal ion content before and after self-assembly tested by ICP-AES.

mean value/(ppm) standard deviation/(ppm)
Fe Ni Cu Fe Ni Mg
Mg 2790 Cu 3247
2259 2216 3247 2259 2216 2790
NMF-LDHs 1.459 1.069 1.111 0 0.345 0.035 0.068 0
CuPcS/NMF-LDHs 1.216 1.088 1.213 0.039 0.015 0.042 0.245 0.01

Table S3. The fitting radiative lifespan of NMF-LDHs and CuPcS/NMF-LDHs in TRPL test.

A1 71(ns) A2 72(ns) Ta(S)
NMF-LDHs 302nm  95.191  869.27 31.682 12355.88 44.32
CuPcS/NMF-LDHs 302nm  78.962  549.58 20.841 12790.43 24.06

Table S4. The fitting lifespan of NMF-LDHs and CuPcS/NMF-LDHs in fs-TA test.

Excitation Detection
Photocatalyst A1 71(ps) A2 72(ps) Ta(ps)
wavelength  wavelength
590 nm 2.3675 31.243 0.655 1759.067 1645.282
660 nm CuPcS/NMF-LDHs 0.599 1680.8701 0.372 49.049 1651.873
400nm
800 nm -0.539 1016.648 -0.338 110.499 1017.457
700 nm NMF-LDHs -0.546 1397.739 -0.145 1021.102 1368.257
590 nm 0.137 145.459 0.665 2119.182 2091.738
630 nm CuPcS/NMF-LDHs

660 nm 1.407 57.509 18.357  58251.499  58247.163



540 nm CuPcS 0.109 37.631 0.672 1562.303 1556.172

Table S5. Photocatalytic test results for the systems irradiated by UV-vis light for 5 h.

The The
yields of yields of TCEN'a! Activity Apparent
improvement quantum yield
photocatalyst co CH4 (nmol/mg)
ratel® (%) (AQY, %)
(nmol/g-h)
NMF-LDHs 72.953 5.576 6.351 - 0.645
CuPcS 30.035 1.896 2.508 - 0.255
0.4 wt% CuPcS/NMF-LDHs 79.355 9.190 6.847 7.810 0.787
0.6 wt% CuPcS/NMF-LDHs 51.345 5.838 4.979 -21.603 0.560
1.2 wt% CuPcS/NMF-LDHs 89.131 18.748 10.942 72.288 1.111
1.6 wt% CuPcS/NMF-LDHs 122.657 18.891 13.215 108.077 1.342
2.0 wt% CuPcS/NMF-LDHs 111.220 15.380 11.516 81.326 1.170
1.6 wt% CuPcS/NMF-LDHs
404.660 32.814 35.728 462.557 3.630
1:9)
1.6 wt% CuPcS/NMF-LDHs
635.641 76.342 62.733 887.766 6.375
3:7)
1.6 wt% CuPcS/NMF-LDHs
543.841 64.081 53.344 739.931 5.421
(5:5)
1.6 wt% CuPcS/NMF-LDHs
481.948 52.887 46.233 627.964 4.458
(7:3)
1.6 wt% CuPcS/NMF-LDHs
467.494 40.334 41.922 560.085 3.363
9:1)
1.6 wt% PcS/NMF-LDHs 150.924 7.257 11.997 88.899 1.219

The potoreduction COz results can be calculation by equation below:

[a] TCEN = Z (production X Helectrons)

Mlcat.
TCEN was represented the total number of electrons actually consumed in photocatalytic CO2 reduction,
Nproduction aNd Nelectrons Were the yields of actual product of CO2 reduction and the moles of electrons reacted to form

a mole product (CO: nelectrions = 25 CHa: Nelectrions = 8), respectively.

TCEN (catalysts — TCEN~NMF - LDHs)
TCEN®MF - LDHs)

[b] e
Activity improvement rate (%) = x100%



Quantum Yield (QY) is often used to estimate the efficiency of reactors for formation of the products’ yields.

QY shows the number of times a reaction occurs per photon absorbed by the system during any radiation-induced

process. The number of incident photons can be estimated by an intensity meter. Nevertheless, it is difficult to

determine the exact measure of photons absorbed by a photocatalyst due to the scattering. For that reason, the

acquired quantum yield is an apparent quantum yield (AQY).! The AQY of products can be described as 10

electrons used for production of methane (8 electrons), and carbon monoxide (2 electrons), as follow:?

€IAQY =

CH, yields (umol/s)x8+C0 yields (umol/s)x2

Photon flux (umol/s)

X 100%

where, both, yields of products and photon intensity are in umol. Photon intensity can be calculated as follow:?

Photon flux (umol/s) =

Intensity of light X Wavelength

Incident area

X
Planck constant X Photon density =~ Avogadro’s constant

The intensity of the lamp is represented in Wm2, the light wavelength is in meters (m) and the reactor incident

area is calculated in m?. Planck's constant, Photondensity, and Avogadro's number are with values 6.63 x 10734 J-s,

3x 108 m's’!, and 6.63 x 10?* mol, respectively.

Table S6. The photocatalytic performance comparison of COz reduction over various catalysts.

Hydroge CHa4
photocatalyst mass Light source CO production Ref.
n source production
Xenon lamp of 300 635.641 76.342umol  This
CuPcS/NMF-LDHs 30mg H20
mW-cm? pmol/gearh /geat'h work
300 W Xenon lamp 0.91
CuP¢/UCN 20mg H-0O 9.17 pmol/gearh 4
(A > 420 nm) pumol/geat-h
300 W Xenon lamp
2-C3N4/CoPc-COOH 50mg H20 646.5 pmol/gearh - 5
(A > 420 nm)
300 W Xenon lamp 4.7
CoPc/a-Fe203 0.1g H0 15.2 pmol/gearh 6
(A > 420 nm) pumol/geat-h
1.5
FePc/WO3 0.lg 300 W Xenon lamp H20 4.3 ymol/gearh 7
pmol/gear-h
300 W Xenon lamp 11.8
ZnPc/1.5G/BVNS 50mg H20 14.5umol/gear-h 8
(A >420 nm) pmol/geat-h
Xenon lamp of 300 2.7
CuPc/Au-BVNS 50mg H-0O 22.5 umol/h-g o
mW-cm? pumol/geat-h
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Figure S1. (A) The DFT calculation of different molar ratio of Ni>": Mg?*: Fe". (B) The surface area curves of
AMO-NMF-LDHs and Bulk-NMF-LDHs.
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Figure S2. The scanning electron microscope (SEM) images of catalysts (A) NMF-LDHs; (B) CuPcS/NMF-LDHs.
The EDS of (C) NMF-LDHs; (D) CuPcS/NMF-LDHs.
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Figure S3. The UV-vis absorption spectra of (A) different concentrations of CuPcS solution. (B) Compare the

absorption before and after the load.
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Figure S4. The zeta potential of (A) self-assembly process, (B) 1.6 wt% CuPcS, (C) NMF-LDHs,
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Figure S6. The UV-vis diffuse reflectance spectra were fitted with Kubelka-Munk formula and Tauc's plot to
estimate the band gap (A) NMF-LDHs and (B) CuPcS. MS curves of NMF-LDHs at different frequencies (C)
1000 Hz, (D) 2000 Hz, (E) 3000 Hz, (F) 4000 Hz, (G) 10000 Hz. MS curves of CuPcS at different frequencies (H)
1000 Hz, (I) 2000 Hz, (J) 3000 Hz, (K) 4000 Hz, (L) 10000 Hz.
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Figure S7. (A) The semiconductor energy level diagram of NMF-LDHs and CuPcS. The EIS test of NMF-LDHs

and the the loading of different concentrations of CuPcS (0.4 wt%, 0.6 wt%, 1.2 wt%, 1.6 wt%, 2.0 wt%) on



NMF-LDHs in (B) dark or (C) light.
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Figure S8. XPS spectra of the NMF-LDHs and CuPcS/NMF-LDHs (A) Cu 2p; (B) N 1s; (C) O 1s.
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Figure S9. (A) The lifetimes of NMF-LDHs at 700 nm with 400 nm laser excitation by fitting the bi-exponential.

(B) TA spectra of NMF-LDHs with 630 nm laser excitation at the different delay times. (C) Comparison of

steady-state and transient absorption spectra of CuPcS. The lifetimes of (D) CuPcS and (E) CuPcS/NMF-LDHs

with 630 nm laser excitation by fitting the bi-exponential. TA spectra of PcS with 400 nm laser excitation (F) and

630 nm laser excitation (G) at the different delay times. TA spectra of PcS/NMF-LDHs with 400 nm laser

excitation (H) and 630 nm laser excitation (I) at the different delay times.

The electronic state abbreviations of So, S1and Tifor the PcS are (72), '(z, #*) and 3(z, 7*) respectively, and

their energies are calculated as follows:

AEsr = Es — Er = 2] (m, 7 %)

Es = Eg(m,m*) + K(m,m *) + J (1, 7w *)
Er = Ey(m,m*) + K(r,mw *) — J(m, 1 )

Eo(z, 7*) is the excited state zero-level energy obtained from a single electron orbital, K(z, 7*) is the



electron-electron correlation of the first order Coulomb effect positive; J(w, n*)is the correction proposed by Pauli
to cause the electron-electron repulsion energy. From this, we can know that the energy difference (AEsr) between
the S1 and Ti of PcS is twice the value of the electron exchange energy J(z, #*), which could is calculated the
matrix element as follows:
J(mm ) = (m(D)m * (2)| €2 /712 [m(2)m (1))
J(mm ) = e /rip(m(Dm + ()| (2)m + (1) ~ (mlm +)

The magnitude of the exchange energy J(m, n*) resulting from electron spin coupling is proportional to the

overlap integral, which means that the greater the overlap of the orbits in space. For the # and 7* orbitals the

overlap is large, so the AEsr of PcS is relatively large to limited the electrons flip due to such strong electron spin

coupling.
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Figure S10. GC standard curve for the quantitative determination of pure (A) CO and (B) CHa by external
standard method. (C) The isotope experiments of photocatalytic CO2 reduction with 13COx.
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Figure S11. (A) Screening of photocatalytic reduction performance of different concentrations of CuPCs (0.4 wt%,
0.6 wt%, 1.2 wt%, 1.6 wt%, 2.0 wt%) loaded on NMF-LDHs. (B) Selection of photocatalytic reduction
performance of CuPcS dissolved in different ratios of solvents (1:9, 3:7, 5:5, 7:3, 9:1) loaded on NMF-LDHs. (C)
The yields of CO and CH4 for NMF-LDHs and different concentrations of CuPCs (0.4 wt%, 0.6 wt%, 1.2 wt%, 1.6
wt%, 2.0 wt%) loaded on NMF-LDHs. (D) The yields of CO and CHa for NMF-LDHs and CuPcS dissolved in
different ratios of solvents (1:9, 3:7, 5:5, 7:3, 9:1) loaded on NMF-LDHs. (E) The yields of CH4 for NMF-LDHs,
1.6 wt% CuPCs/NMF-LDHs, 1.6 wt% CuPCs/NMF-LDHs (3:7), and 1.6 wt% PCs/NMF-LDHs within 5 hours. (F)



performing blank and control experiments under the same experimental conditions.
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Figure S12. Schematic of the self-assembled molecular orientation of CuPcS with NMF-LDHs. (A) CuPcS
molecular structure, (B) horizontal arrangement, (C) vertical arrangement, (D) mixed arrangement, (E) vertical

arrangement of multiple CuPcS.
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Figure S13. (A) The 2D spectra of in-situ FTIR of the CuPcS/NMF-LDHs. (B) The in-situ FTIR of the
NMF-LDHs. (C) EPR of CuPcS added DMPO to test the -OH and -Ox signals at room temperature.

EPR is measured as the derivative of the absorbed microwave power and so in the absence of resolved
nuclear hyperfine coupling, two features will be observed; a smaller positive going feature corresponding to
molecules aligned with their axis parallel to the magnetic field which is referred to as gl and a second stronger
feature that appears similar to a 1st derivative Gaussian line from molecules oriented with their symmetry axis
perpendicular to the applied magnetic field. We will refer to this feature as coming from gi. The CuPcS is planar
aromatic molecule, and axial symmetry is reflected in EPR spectra, with g being axially symmetric. Although there
are two isotopes, ©*Cu and ©Cu which both have a nuclear spin of 3/2 giving rise to four distinct energy levels, we
did not observe the hyperfine structure of 3100 G for the g (1.999) because it was not well distinguished in

polycrystalline samples.
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