Supporting information

Fe doped α-MnO₂/rGO cathode material for zinc ion battery with long lifespan and High areal capacity

Qiang Zhang,^a Hefei Fan,^a Qianfeng Liu,^a Yangga Wu^b and Erdong Wang^{*, a}

a Division of Fuel Cell & Battery, Dalian National Laboratory for Clean Energy,

Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116023,

China. E-mail: edwang@dicp.ac.cn.

b Energy Administration of Inner Mongolia Autonomous Region

Fig. S1 The HRTEM images of Fe doped α -MnO₂/rGO (a) and α -MnO₂ (b) with their EDS images.

Fig. S2 CV curves of α -MnO₂.

Table S1 The list of performance comparison of MnO_2 -based cathode materials forZIBs.

sample	Current density (A g ⁻¹)	Specific capacity (mAh g ⁻¹)	Ref.
β-MnO ₂ @GO	1.2	129.6 (after 2000 cycles)	14, Nano-Micro Lett. (2021) 13:173
MnO ₂ @N	0.5 5	160 (after 500 cycles) 102 (after 1000 cycles)	17, J. Energy Chem., 64 (2022) 23-32
A-MnO ₂	3	100 (after 600 cycles)	47, Chem. Eng. J., 441 (2022) 136008
S-MnO ₂	3	150 (after 1000 cycles)	48, Energy storage mater., 47 (2022) 424- 433
α-MnO ₂	0.5	130 (after 100 cycles)	49, Small, 2020, 16, 1905842
CuMO	5	100 (after 700 cycles)	50, Chem. Eng. J., 433 (2022) 133687
Mo-MnO ₂	1	159 (after 1000 cycles)	51, ACS Appl. Mater. Interfaces, 15 (2023) 859-869
δ-MnO ₂	1	114 (after 1000 cycles)	52 , ACS Appl. Mater. Interfaces, 2022, 14, 21159–21172
$\alpha\text{-}MnO_2/Mn_2O_3$	3	183 (after 1000 cycles)	53, J. Energy Chem., 54 (2021) 475–481
MnO ₂ /GO	2	160 (after 2000 cycles)	54, Adv. Funct. Mater., 2021, 31, 2007397
N-MnO _{2-x}	1	170 (after 1000 cycles)	55, Small 2019, 15, 1905452
This Work	1 10 15	172 (after 2000 cycles) 72.1 (after 10000 cycles) 62.5	

Fig. S3 The long-term cycle performances and images (embedded on the left) of the flexible porous zinc powder anode and bare Zn foil anode tested by Zn||Zn symmetric cell at 1 mA cm⁻² and 1 mAh cm⁻².

Fig. S4 The curves of (a) open circuit voltage (OCP) and (b) discharge performance after storage for 760 h as well as without storage for the assembled pouch battery with Fe doped α -MnO₂/rGO and flexible porous zinc powder anode as cathode and anode (theoretical capacity 100 mAh).