Electronic Supplementary Information

Flexibly stretchable acrylic resin elastomer films for efficient electromagnetic

shielding and photothermal conversion

Ruoling Yu^a, Leilei Liang^b, Yue Zhao^a, Guangbin Ji^{*,a}

^a College of Materials Science and Technology, Nanjing University of Aeronautics

and Astronautics, Nanjing 211100, P. R. China

^b School of Electronic Science and Engineering, Nanjing University, Nanjing 210093,

P. R. China

*Corresponding Author: Prof. Dr. Guangbin Ji, E-mail: gbji@nuaa.edu.cn

Supplementary Figure 1. Digital images of the top view (**a**) and bottom view (**b**) of the two-axis stretchable device. (**c**) Digital image of a two-axis stretchable device when sprayed with a custom sized mask. (**d**) Digital images of SWCNTs/ADE films fixed with a polyethylene terephthalate (PET) rectangular frame.

Supplementary Figure 2. (a) Raman spectra of pure single-walled carbon nanotube used in the experiment. **(b)** UV-Vis spectra of the SWCNTs/ADE films. **(c)** FTIR spectra of the SWCNTs/ADE films.

Due to the high purity of the single-wall carbon nanotube(SWCNTs), the content of amorphous carbon is very small, so the D-peak is not obvious. Because the degree of

graphitization of SWCNTs is high, so the unsaturated functional groups in the carbon nanotubes are few, thus, the vibration of the -OH peak at 2913 cm⁻¹ and the C=O peak at 1726 cm⁻¹ is caused by the unsaturated functional groups in the acrylic resin substrate. The highest absorption of SWCNTs/ADE films at 8.6 µm was due to the C-C peak absorption at 1152 cm⁻¹, which resulted in the C-C bond in the conductive layer of SWCNTs.

Supplementary Figure 3. SEM images of the SWCNTs distributed randomly and evenly on the ADE substrate of (a) 300% areal strain and (b) 100% areal strain.

Supplementary Figure 4. (a) Digital image of water contact angle of the blank VHB film. Digital images of water contact angles of SWCNTs/ADE films at different applied areal strains: 150% (b); 250% (c); 300%-2 (d).

Supplementary Figure 5. SSE/t values of SWCNTs/ADE films under different applied areal strains.

Supplementary Figure 6. Power coefficients of SWCNTs/ADE films at different applied areal strains: 300% (a); 100% (b); 150% (c); 200% (d); 250% (e) and 300%-2 (f).

Supplementary Figure 7. The waveguide model for EMI shielding performance simulation.

Supplementary Figure 8. Infrared thermal images of SWCNTs/ADE films under different applied areal strains without heating: 300%(a); 100%(b); 150%(c); 200%(d); 250%(e); 300%-2(f).

efficiency.	
Bending Cycles	Shielding efficiency (%)
0	99.9%
200	99.85%
400	99.6%
600	98.85%
800	98.03%
1000	96%

Supplementary Table 1. Bending times and electromagnetic interference shielding efficiency.