Supporting Information

3D Crinkled MXene/TiO₂ Heterostructure with Interfacial Coupling for Ultra-

Fast and Reversible Potassium Storage

Xinyue Zhang^{*a*}, Jing Wang^{*a*}, Yuting Jiang^{*a*}, Meng Zhang^{*a*}, Huihua Min^{*b*}, Hao Yang

*,*a*, Jin Wang*,*a*

^a College of Materials Science and Engineering, Nanjing Tech University, Nanjing

211800, PR China

^b Electron Microscope Lab, Nanjing Forestry University, Nanjing 210037, Jiangsu, PR China

Corresponding Author

* E-mail: mse_yanghao@njtech.edu.cn (Hao Yang); msejwang@njtech.edu.cn (Jin Wang)

Figure S1 (a)-(b) SEM images, (c) TEM image and (d) HRTEM image of MXene.

Figure S2 XRD patterns of Ti_3AlC_2 and $Ti_3C_2T_x$ nanosheets.

Figure S3 CV curves of CM at a scan rate of 0.1 mV s⁻¹.

Figure S4 (a) Galvanostatic charge/discharge curves of CM at 0.05 A g^{-1} . (b) The charge/discharge profiles of CM at different current densities.

Figure S5 Cycle performance of MXene at 0.05 A g^{-1} over 100 cycles.

Figure S6 (a) SEM images of CM/TiO₂ after cycle at 0.05 A g^{-1} . (b) SEM images of CM after cycle at 0.05 A g^{-1} .

Figure S7 (a) SEM images of CM/TiO₂-3h. (b) SEM images of CM/TiO₂-4h.

Figure S8 (a) Rate capability of CM/TiO₂-3h at various current densities. (b) Rate capability of CM/TiO₂-4h at various current densities. (c) Long cycle performance of CM/TiO₂-3h at 1 A g^{-1} . (d) Long cycle performance of CM/TiO₂-4h at 1 A g^{-1} .

Figure S9 (a) CV profiles of CM at different scan rates from 0.2 to 1.0 mV s⁻¹. (b) Capacitive contribution of CM at 0.6 mV s⁻¹. (c) Normalized contribution ratio of capacitive capacities in CM at various scan rates.

Figure S10 Nyquist plot of CM/TiO₂ and CM after 100 cycles.

Figure S11 (a) Galvanostatic charge/discharge curves of AC electrode at 0.2 A g^{-1} . (b) Rate capability of AC electrode at various current densities. (c) Cycle performance of AC electrode at 0.2 A g^{-1} .

Electrodes	Low rate capacity	High rate capacity	Cycle number
This work	301 mA h g ⁻¹	94 mA h g ⁻¹	150 mA h g ⁻¹
	(0.1 A g ⁻¹)	(0.4 A g^{-1})	(0.05 A g ⁻¹ , 100 cycles)
Ti ₃ CN[1]	181 mA h g ⁻¹	80 mA h g ⁻¹	60 mA h g ⁻¹
	(0.02 A g ⁻¹)	(0.5 A g ⁻¹)	(0.1 A g ⁻¹ , 100 cycles)
f-MXene[2]	119 mA h g ⁻¹	80 mA h g ⁻¹	120 mA h g ⁻¹
	(0.08 A g ⁻¹)	(0.5 A g^{-1})	(0.1 A g ⁻¹ , 200 cycles)
$a\text{-}Ti_3C_2T_{x[3]}$	167 mA h g ⁻¹	90 mA h g ⁻¹	50 mA h g ⁻¹
	(0.08 A g ⁻¹)	(0.2 A g ⁻¹)	(0.1 A g ⁻¹ , 120 cycles)
$Ti_3C_{2[4]}$	119 mA h g ⁻¹	57 mA h g ⁻¹	30 mA h g ⁻¹
	(0.01 A g ⁻¹)	(0.5 A g^{-1})	(0.2 A g ⁻¹ , 500 cycles)
h-MXene[2]	69 mA h g ⁻¹	39 mA h g ⁻¹	100 mA h g ⁻¹
	(0.08 A g ⁻¹)	(0.5 A g^{-1})	(0.1 A g ⁻¹ , 200 cycles)
MXene Ti ₃ C _{2[5]}	105 mA h g ⁻¹	20 mA h g ⁻¹	80 mA h g ⁻¹
	(0.06 A g ⁻¹)	(0.5 A g^{-1})	(0.05 A g ⁻¹ , 100 cycles)
N-UT-Ti $_{3}C_{2}T_{x[6]}$	166 mA h g ⁻¹	141 mA h g ⁻¹	100 mA h g ⁻¹
	(0.09 A g^{-1})	(0.3 A g^{-1})	(0.1 A g ⁻¹ , 100 cycles)

 Table S1. The comparisons of the reported anode for PIBs.

Reference

[1] J. Zhu, M. Wang, M. Lyu, Y. Jiao, A. Du, B. Luo, I. Gentle, L. Wang, Two-Dimensional Titanium Carbonitride Mxene for High-Performance Sodium Ion Batteries, ACS Applied Nano Materials 1(12) (2018) 6854-6863.

[2] P. Zhang, R.A. Soomro, Z. Guan, N. Sun, B. Xu, 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage, Energy Storage Materials 29 (2020) 163-171.

[3] Yu Xie, Yohan Dall'Agnese, Michael Naguib, Yury Gogotsi, Michel W. Barsoum, Houlong L. Zhuang, and Paul R. C. Kent, Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries, ACS Nano (2014) 9606–9615.

[4] P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang, W. Sen, C. Sun, J. Qin, X. Shi, X. Bao, Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries, Nano Energy 40 (2017) 1-8.

[5] Z. Guo, G. Dong, M. Zhang, M. Gao, L. Shao, M. Chen, H. Liu, M. Ni, D. Cao, K. Zhu, Sulfur-Decorated $Ti_3C_2T_X$ MXene for High-Performance Sodium/Potassium-Ion Batteries, Chemistry – An Asian Journal 18(18) (2023).

[6] Y. Zhao, G. Dong, M. Zhang, D. Wang, Y. Chen, D. Cao, K. Zhu, G. Chen, Surfaceengineered $Ti_3C_2T_X$ MXene enabling rapid sodium/potassium ion storage, 2D Materials 10(1) (2022).