Supporting Information

MOF modified C_3N_4 for efficient photo-induced removal of uranium under air without sacrificial agents

Lingyu Zhang^a, Yuhao Yang^a, Nan Zhao^a, Shuang Liu^c, Zhe Wang^{a,b*}, Xiangke Wang^a,

Yuexiang Lu^{b*}

a College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China

b Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

c Nuclear Research Institute for Future Technology and Policy, Seoul National University, Seoul 08826, Republic of Korea

Corresponding Authors

*Zhe Wang, E-mail: wang2023@tsinghua.edu.cn

*Yuexiang Lu, E-mail: luyuexiang@mail.tsinghua.edu.cn

Characterization

The photocatalysts were characterized by SEM, XPS, XRD, BET, PL, FT-IR. The morphology of samples was observed with scanning electron microscopy (ZEISS Gemini SEM 360). X-ray photoelectron spectroscopy (XPS) measurements were performed on the PHI Quantro SXM, ULVAC-PHI, Japan. X-ray diffraction (XRD) measurements were performed using the Rigaku Corporation. Brunauer-Emmett-Teller (BET) surface areas of samples were measured by means of N_2 adsorption over the Trista II. Fluorescence spectroscopy of samples were measured by Perkin Elmer LS 55. Fourier Transform Infrared Spectroscopy (FTIR, IRTracer-100, Japan) was used to investigate the stability of the samples in the range of 500-4000 cm⁻¹.

Fig. S1 Nitrogen adsorption-desorption isotherms of synthesized materials.

Fig. S2 XPS survey spectrum of (a) C_3N_4 , (b) MOF, (c) C_3N_4 -MOF and (d) C_3N_4 -MOF after the photocatalytic removal of uranium.

Table S1. The atomic ratios of C, N, O, Ni and U elements in materials obtain from XPS.

Sample Element	C_3N_4	MOF	C ₃ N ₄ -MOF	C ₃ N ₄ -MOF (photocatalytic)
С	56.31%	63.77%	52.53%	47.5%
Ν	39.31%	1.87%	30.43%	32.14%
Ni		5.21%	3.28%	1.48%
Ο	4.38%	29.15%	13.75%	17.38%
U				1.5%

Fig. S3 Band gap calculated derived from the UV-Vis absorption spectrum of (a) C_3N_4 , (b)

MOF, (c) C₃N₄-MOF. Mott–Schottky plots of (d) C₃N₄, (e) MOF, (f) C₃N₄-MOF.

Fig. S4 The PL spectra of C_3N_4 and C_3N_4 -MOF with an excitation wavelength of 380 nm.

Fig. S5 The zeta potential of C₃N₄-MOF under different pHs.

Fig. S6 XRD patterns of C₃N₄-MOF after the photocatalytic reaction under N₂ atmosphere.