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1. Photograph capturing the experimental arrangement.

2. (a) Reaction product collection using Nessler reagent from PtRu@TiN/NG, (b) calibration curve
used for estimation of NH; concentration. The absorbance at 420 nm was measured by UV-vis
spectrophotometer.

3. TEM image of (a) pure monolayer N doped graphene i.e., NG (b) Corresponding SAED pattern
(c) TiN NPs.

4. EPR spectra of PtRu@TiN/NG sample at room temperature.
5. Micro-GC of NRR gas products collected after the 60 min reaction.

6. Hydrazine detection using a para-(dimethylamino) benzaldehyde color reagent, with absorbance
measured at 455 nm. PtRu@TiN/NG exhibited no detectable hydrazine signal.

7. (a) 1°N, isotope labelling experiment for the NRR, (b) MALDI-MS spectra for the qualitative
isotope labelling test.

8. Plot depicting the current-time profile of the PtRu@TiN/NG electrode, recorded at -1 V in an
N, environment with light exposure for a duration of 10 hours.

9. Effective electrochemical active surface area tests (ECSA) of (a) PtRu@TiN, (b)
PtRu@Graphene, and (c) PtRu@TiN/Graphene.



Table 1. Inductively coupled plasma mass spectrometry (ICP—MS) analysis of Pt and Ru loading
on TiN/NG.

Table 2. A summary of the reported studies on the N, reduction to NH; by Photo-electro-catalysis.

Table S1. Inductively coupled plasma mass spectrometry (ICP—MS) analysis of Pt and Ru loading
on TiN/NG

Sample Pt Ru
PtRu@TiN/NG 1.10 Wt.% 1.0 Wt.%
Pt@TiN/NG 2.05 Wt.% XX
Ru@TiN/NG XX 2.1 Wt.%

Nitrogen gas

Figure S1. Photograph capturing the experimental arrangement.
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Figure S2. (a) Reaction product collection using Nessler reagent from PtRu@TiN/NG, (b)
calibration curve used for estimation of NH; concentration. The absorbance at 420 nm was

measured by UV-vis spectrophotometer.
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Figure S3. TEM image of (a-b) TiN NPs and its histogram illustrating the size distribution (c)
pure monolayer N doped graphene i.e., NG indicated by arrow, (d) corresponding SAED pattern.
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Figure S4. EPR spectra of PtRu@TiN/NG sample at room temperature.

-0.5V 0.8% 99.2%
-1V 0.08 0.82% 99.1% 316
-1.5V 0.21% 0.78% 99.01% 301

Figure S5. Micro-GC of NRR gas products collected after the 60 min reaction.
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Figure S6. Hydrazine detection using a para-(dimethylamino) benzaldehyde color reagent, with
absorbance measured at 455 nm. PtRu@TiN/NG exhibited no detectable hydrazine signal.
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Figure S7. (a) N, isotope labelling experiment for the NRR, (b) MALDI-MS spectra for the
qualitative isotope labelling test.
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Figure S8. Plot depicting the current-time profile of the PtRu@TiN/NG electrode, recorded at -1
V in an N, environment with light exposure for a duration of 10 hours.
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Figu

re S9. Effective electrochemical active surface area tests (ECSA) of (a) PtRu@TiN, (b)
PtRu@NG, and (c) PtRu@NG.

Table S2. An overview of the documented research on the photo-electro-catalytic conversion of

Nz to NH3

Catalysts

PtRU@TiN/NG

Pt-TiN/C;Ny

Black Silicon

Cs 20/0s-Au

TiOz-CUzO/RU.

reduced graphene
oxide

Light sources

2 suns illumination

1 sun illumination

2-sun illumination

UV-Visible

150-W Xenon lamp

N/A

Electrolytes

N,- saturated H,SO, in
H,O0, Scarifical reagent:
Methanol

N,- saturated H,SO, in
H,0, -1V Vs. Hg/SO,

N, —saturated Na,SO; in
H,0, -1 V Vs. Ag/AgCl

N»/H,

N, -saturated Na,SO, in
H,O

N, -saturated HCI in H,O at
-0.1V vs RHE

NH; yield rates

316 pg-h !

. -1
MEcat.

105 ug-h - "mge, !

133 mgm2h!

2685 umol g ' h!

37.4 ug  mge, ' h!

7.3 ug  mge ' !

Ref.

This
work



NiO-Au-TiO, 532 nm CW laser, 0.2 M KNOs; electrolyte, 80 umol- L! 6

43.8 mW/cm? -1.2 Vvs Ag/AgCl,
Auembeddedin  Xenon lamp at 420 N, -saturated in H,O 7834 umol g'h!t 7
hollow carbon nm cutoff filter
nitride sphere
BaONCS-TNS KNO; 11.97 mol 8

Scarifical reagent: ethylene = gne ' h™!
glycol, =1.0 to 1.5V vs.
RHE

Au nanoparticles 0.1M Li,SO,,-0.3 V vs. 9.2 ug h''em? 9
RHE
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