Supporting Information

Potassium Ferrite Nanosheets with Tin Doping for Enhanced Large-Current-Density H₂ Production and Ultra-Long Life Rechargeable Zn-Air Battery

Juan Jian,^a Zhuo Wang,^a Yu Qiao,^a Fen Yao,^a Meiting Wang,^a Limin Chang^a,* and Ping Nie^a,*

^{*a*} Key Laboratory of Preparation and Applications of Environmental Friendly Material of the

Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R.

China

* Corresponding authors' E-mails: changlimin2139@163.com; xdnieping2009@sina.com

1. Material and Experimental Instruments

1.1 Materials used in the experiment

Pt/C (20 wt%) was obtained from Macklin Ltd. (Shanghai, China), RuO₂ was synthesized from ruthenium chloride hydrate (RuCl₃·xH₂O) purchased from Aladdin Ltd. (Shanghai, China).^[1] Nickel foam (NF) was provided by the Li Yuan Technology Co. Ltd. (Shanxi, China). KOH, Fe(NO₃)₃·9H₂O, Na₂SnO₃·3H₂O, HCl and other chemicals are supplied by the Beijing Chemical Reagents Company. Apart from the NF, all the chemicals are analytical pure and do not needed further purification.

1.2 Experimental Section

Basic Phase Characterizations

X-ray diffraction (XRD) experiment was tested on a Rigaku D-Max 2550 diffractometer with Cu-K α radiation (λ = 1.5418 Å). Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX) images were obtained on a JEOL-6700 scanning electron microscope. Transmission electron microscope (TEM), high resolution TEM (HRTEM) images were obtained with microscopy of Philips-FEI Tecnai G2S-Twin, equipped with a field emission gun operating at 200 kV. X-ray photoelectron spectra (XPS) analysis was performed on a VG Scienta R3000 spectrometer with Al K α (1486.6 eV) as the X-ray source. Contact angle (CA) experiment was analyzed by the machine of Dataphysics OCA20 at room temperature.

Electrochemical Measurements

The electrochemical measurements were conducted using the three-electrode system with the electrochemical workstation (CHI 760e). The as-prepared electrodes were directly used as the working electrodes; meanwhile, graphite rod and Hg/HgO electrode were served as counter and reference electrodes, respectively. 1.0 M KOH solution was used as

S2

electrolyte for HER, OER and OWS devices, while 0.1 M KOH were applied for the ORR process. Potentials were normalized versus the standard hydrogen electrode (RHE) according to formula below:

$$E_{(RHE)} = E_{(Hg/HgO)} + 0.098 V + 0.0591 \text{ pH}$$
(1)

Here, $(E_{(Hg/HgO)})$ is the potential we directly measured during the experiment.

Polarization curves were performed via sweeping potentials at a scan rate of 2.0 mV s⁻¹. The measured potentials were calibrated with *iR* compensation. Corresponding stability data were examined through current-time curves at the constant potentials.

The loading was calculated through a series of parallel experiments, the mass changes of NF-based materials before and after the synthesis reaction were used to determine the loading capacity.

Tafel slope:

The data of Tafel slope can be plotted by the gained linear sweep voltammetry (LSV) curves, which is obtained from the follow equation:

$$\eta = a + b \log j \tag{2}$$

Where, " η " refers to the overpotential; "j" is the current density; "a" relates to the j_0 (exchange current density) and can be reflected by the intercept; "b" is the Tafel slope we need to acquire.

Electrochemical surface area (ECSA)

The ECSA is calculated by the formula below:

$$ECSA = A * C_{dl} / C_{s}$$
(3)

Where "A" refers to the area of the working electrode, and we set the electrode area to 0.25 cm² throughout the electrocatalytic water splitting testing; " C_s " relates to the electrolyte and $C_s = 0.04$ mF cm⁻², " C_{dl} " is the abbreviation of double layer capacitance and

calculated from a series of CV curves that tested within the non-Faraday potential range (0.9254-1.0254 V vs. RHE), scan rate changed from 10 to 100 mV s⁻¹, increased with 10 mV s⁻¹ each time.

Faraday efficiency (FE):

Faraday efficiency (FE) of Sn-KFO for OER/HER can be calculated by the ratio of the amount of O₂/H₂ collected by drainage method and the theoretical O₂/H₂. Take OER for example, the actual amount O₂ production (labeled as n_{o-experimental}) can be calculated using the equation of $n_{o-experimental} = V/V_m$, where V is the volume of O₂ collected from the chronoamperometry testing; V_m is molar volume of ideal gas, and $V_m = 22.4 \text{ L mol}^{-1}$. For the theoretical O₂ (marked as n_{o-theoretical}) accumulated during the OER. According the OER equation of $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$, where, the electrolytic efficiency (n) can be measured by the equation of $\eta = z^*n^*F/Q$. Here, "n" is the mole of O₂ generated during the OER, and can be marked as n_{o-theoretical}; "z" is the number of transferred electrons generated per mole of O₂ during the OER, here, z = 4; "F" is the Faraday constant, F = 96485 C mol⁻¹; "Q" refers to the actual quantity of electric charge, and can be calculated by the flume of Q = Σ i*t. In the chronoamperometry experiment, the Q can be directly calculated. To evaluate the FE of a catalyst for OER, we assume that 100 % current efficiency occurs during the whole reaction. Hence, $1 = 4*F*n_{o-theoretical}/Q$, therefore, $n_{o-theoretical} = Q/(4*F)$. The calculation of FE for HER is similar with the OER, merely the the number of transferred electrons generated per mole of H₂ during the HER is 2.

Assembly and Testing of the Zn-Air Battery

As for the liquid Zn-air battery, in order to avoid electrolyte leakage, we physically compounded the NF-based catalyst with the waterproof/breathable carbon film, and then assembled the complex as the air-cathode of the Zn-air battery.

Both the charge and discharge curves were measured by the CHI 760e, the power density was calculated from the data of the discharge curve. Charge-discharge curves at current density of 10 mA cm⁻² in this work were measured by the Land battery test system.

2. Theoretical Section

Computation Details

The KFO is a new 3D open-framework ferrite, which belongs to the trigonal space group $P\overline{3}1m$, and the optimized unit cell parameters are a = b = 5.006 Å and c = 6.633 Å, all of which are very close to the corresponding experimental values (a = b = 5.155 and c = 6.902Å).^[2] First-principles calculations were carried out using density functional theory (DFT) with generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) implemented in the Vienna Ab-Initio Simulation Package (VASP).^[3] The valence electronic states were expanded on the basis of plane waves with the core-valence interaction represented using the projector augmented plane wave (PAW) approach and a cutoff of 520 eV.^[4] A 1.75 layered (001) facet was cleaved with the vacuum slab height of 20 Å. A 3 × 3 supercell containing 117 O, 18 K and 72 Fe atoms were studied. To model the substitution, a Fe atom in octahedral coordination was replaced by a Sn atom, and can be modeled by the corresponding slab (Fig. S11). A Γ -centered k-mesh of 2 \times 2 \times 1 was used for the Fe-O surface calculations. During the computational process, the outermost Fe-O layer in the theoretical slab model is fully relaxed without any symmetry or direction restrictions, while the remaining atoms are kept frozen.

The adsorption energy of H was calculated based on the following equation:

$$\Delta E = E_{slab-H} - 0.5E_{H2} - E_{slab}$$
⁽⁴⁾

Where, E_{slab-H} , E_{H2} , and E_{slab} are the total energy of the whole system, the H₂ molecule, and the slab, respectively.

Then, the reaction free energy change can be obtained from equation below:

 $\Delta G = \Delta E + \Delta Z P E - T \Delta S$

(5)

Here, the difference in zero-point energies, Δ ZPE, and the change in entropy Δ *S* are determined by using DFT-calculated vibrational frequencies and standard tables for the gas-phase molecule.^[5]

3. Supplementary Figures and Tables

Fig. S1. The XRD results of (a) KFO powder and Sn-KFO powder, (b) enlarged patterns of NF based KFO and Sn-KFO. (c, d) The AC HADDF-STEM images of the Sn-KFO.

Obviously, the patterns of Sn-KFO powder illustrated in Fig. S1a is well consistent with that of the pure KFO powder. This confirms that the as synthesized NF based catalyst is the KFO-based material. As shown in Fig. S1b, comparing with the pure KFO, the XRD pattern of Sn-KFO displayed a slightly low degree shift, which mainly attribute to the introduction of Sn. Additionally, the AC HADDF-STEM images displayed in Fig. S1c,d also confirm the slight change in lattice spacing after the Sn-doping.

Fig. S2. The SEM image of pure KFO.

Catalyst	C _{dl} (mF cm⁻²)	C _s (mF cm ⁻²)	A (cm²)	ECSA (cm²)
KFO	3.25	0.04	0.25	20.31
Sn-KFO	3.95	0.04	0.25	24.69

Table S1. C_{dl} , ECSA and related data of KFO and Sn-KFO.

Fig. S3. The CV curves at different scan rate of (a) KFO, (b) Sn-KFO, and (c, d) their corresponding relationships between scan rate and $\Delta j = 1.0754 \text{ V}$.

Fig. S4. SEM-mapping and corresponding content of constituent elements of Sn-KFO.

Fig. S5. (a, b) The bar-graphs between current density (j) and potential (V) of Sn-KFO and KFO during the OER process.

Fig. S6. The (a) LSV curve that i-t test later, (b) SEM image (c) Fe 2p spectra and (d) Faraday efficiency of Sn-KFO that after the OER course.

Fig. S7. (a, b) The bar-graphs between current density (j) and potential (V) of Sn-KFO and KFO during the HER process.

Fig. S8. The i-t curves of Sn-KFO for the HER course.

Fig. S9. The (a) LSV curve that i-t test later, (b) SEM image (c) Fe 2p spectra and (d) Faraday efficiency of Sn-KFO that after the OER course.

Fig. S10. The ORR plot of NF based Pt/C electrode.

Fig. S11. The top and side views of the slab model corresponding to the (001) surface for the Sn-KFO system.

Fig. S12. The theory calculation at (a) T_{Fe1} and (b) T_{Fe2} site when U = 0, insert atomic structure diagrams are the corresponding absorptive state.

Fig. S13. Contact angel testing images of Sn-KFO and bare NF that at 0, 40, 80 and 160 ms after the water droplets come into contact with the surface of the material.

Fig. S14. The Coulombic efficiency of the Zn-air assembled with Sn-KFO serving as aircathode, one cycle of charging-discharging needs 20 min at current density of 10 mA cm⁻².

Fig. S15. (a) The XRD result and (b) SEM image of Sn-KFO that after the long-time charging and discharging process.

Table	S2 .	A	properties	comparison	of	various	electrocatalysts	for	overall	water	splitting
(OWS)											

Catalys	Voltage at 10	Voltage at 100	Reference
(OWS)	mA cm ⁻² (V)	mA cm⁻² (V)	
Sn-KFO	1.55	1.70	This work
KFO	1.59	1.73	This work
Pt/C∥RuO₂	1.54	1.81	This work
Co/CNFs	1.60		[6]
Co ₉ S ₈ /Ni ₃ S ₂ /NF	1.64		[7]
CoMoO nanosheet arrays@NF	1.68	≈1.88	[8]
Ni₃FeN/r-GO	1.60	≈1.96	[9]
P-Co ₃ O ₄ /NF	1.63		[10]
CoP@3D Ti ₃ C ₂ -Mxene	1.57	≈1.70	[11]

P-doped Co-Ni-S/NF	1.60		[12]
RuO₂/NiO/NF	1.50		[13]
Fe-Ni ₂ P	1.49	≈1.73	[14]
Ni ₃ S ₂ -NGQDs/NF	1.58		[15]
NiFe/Ni(OH)₂/NiAl	1.59		[16]
MoP/Ni₂P/NF	1.55		[17]
N(P)-doped 304-type stainless	1.74		[18]
steel mesh			
Cu@CoS _x /Cu Foam	1.50	1.80	[19]
CoFePO/NF	1.56	≈1.95	[20]
N-Ni ₃ S ₂ / NF	1.48	≈1.83	[21]
NiCo ₂ S ₄ nanowire arrays	1.63		[22]
NiFeOOH		1.49	[23]
CP/CTs/Co-S	1.74		[24]
NiCoP	1.58	≈1.81	[25]
CoFeZr oxides/NF	1.63	≈1.80	[26]
MoS ₂ -NiS ₂ /NGF	1.64		[27]
Ni-graphitic carbon (NGC)	1.64		[28]
Mo-Ni ₃ S ₂ nano-rods	1.53		[29]
Ni@NC800/NF	1.60		[30]
Ni _{1-x} Fe _x /NC/NF	1.58		[31]
MoO₃/Ni-NiO	1.55		[32]
Cu@CuS	1.52		[33]

Table S3. A conclusion of the Zn-air battery activities for the recently reported self-powered trifunctional catalysts.

Trifunctional catalyst	Voltage at 10 mA cm ⁻² (OWS)	Battery voltage (V)	Power density (mW cm ⁻²)	Charging and discharging cycle time @ 10 mA cm ⁻² (h)	Voltage gap (V)	Refer ence
Sn-KFO	1.55	1.365	136.9	> 1000	0.817	This work
KFO	1.59	1.33	130.1	320	0.910	This work
Pt/C-RuO ₂	1.54	1.35	95.4	170	0.881	This work
Pt@Fe-MOF	1.46	1.40	104	95		[34]
NiCoP/NiO	1.71	1.43	84.5	113	0.84 0.86	[35]
Fe-NiCoP	1.60	1.40		900 cycles @ 5		[36]

				mA cm⁻²		
Fe Doped MOF CoV@CoO nanoflakes	1.53	1.45	138	50	0.89	[37]
Co-MOF-800		1.38	144	85 @ 1 mA cm ⁻²	0.46 0.58	[38]
Co@NCL	1.70	1.47	170	200	0.88	[39]
Co/N-CNF-800	1.80			50	1.39	[40]
Fe-Co-Ni MOF	1.60	1.42	161	120 @ 5 mA cm ⁻²	0.46 0.56	[41]
3%lrO _x /NCNT	1.52	1.5	59.3	120 @ 5 mA cm ⁻²	0.65	[42]
CoFe@NC/NCHNSs- 700	1.66	1.49	184	50	~0.87	[43]
CoDNG900		1.45	205.6	667	0.82	[44]
Pt/d-CoP/NPC	1.53	1.39	182.8	200	~1.05	[45]
MoCoP-NPC	1.65	1.50	175.2	300	0.470.5	[46]
FeZn₄Co@CNFs		1.50	107.6	118	~0.87	[47]
Co-COP		1.46	83.6			[48]
SC-Cu _{sa} -NC	1.58	1.48	124.9	120	~0.9	[49]
Fe-N-C/FeP _x /NPSC	1.57	1.49	216.9	93	0.87- 0.96	[50]
RuCoO _x	1.54	1.54	160	1100 cycles @ 5 mA cm ⁻²	~0.86	[51]
RuCo/NPC	1.68	1.45	79.4	16.67 @ 2 mA cm ⁻²	~0.75	[52]
Re-Ni ₃ S ₂ /NG/NF	1.58	1.36	99	266	~0.88	[53]
NAC@Co₃O₄/NCNTs/C NF		1.43	267.6	67	0.81.25	[54]
Pd-coated (CoFe/NCNTs)	1.60	1.48	261	50	0.69	[55]
CoP/Co ₃ O ₄ -fC-pPVP	1.58	1.49	154	727 @ 5 mA cm ⁻²	~0.75	[56]
CoFeN-NCNTs//CCM	1.63	1.46	145	445	0.76	[57]
B-CoSe₂@CoNi LDH HNA	1.58	1.41	181.5	70 @ 1 mA cm ⁻²	~0.8	[58]
NiCu-MoS₂	1.62	1.43	283	133	0.71- 0.74	[59]
FeSn2@FeSnOx@S-N- C-900		1.50	64.5	24	1.5	[60]
SnSb-NC		1.58	195.8	1106	~1.3	[61]
$Sn_{x=0.15}$ - Ga_2O_3			138	30	0.58	[62]

4. Reference

Jian, J.; Yuan, L.; Qi, H.; Sun, X. J.; Zhang, L.; Li, H.; Yuan, H. M.; Feng, S. H. ACS Appl.
 Mater. Inter. 2018, 10, 40568.

[2] Jian, J.; H. M. Yuan, and et al. J. Mater. Chem. A **2021**, 9, 7586-7593.

[3] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. **1998**, 77, 3865.

[4] Blochl, P. E. *Phys. Rev. B* **1994**, 50, 17953.

[5] Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J.; Pandelov, S.;

Stimming, U. J. Electrochem. Soc. 2005, 152, J23.

Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y.; Li, Y. D. Adv.
 Mater. 2019, 31, 1808043.

[7] Du, Feng.; Shi, L.; Zhang, Y. T.; Li, T.; Wang, J. L.; Wen, G. H.; Alsaedi, A.; Hayat, T.;
 Zhou, Y.; Zou, Z. G. Appl. Catal., B 2019, 253, 246.

[8] Zhang, Y.; Shao, Q.; Long, S.; Huang, X. Q. *Nano Energy* **2018**, 45, 448.

[9] Gu, Y. Chen, S.; Ren, J.; Jia, Y.; Chen, C. M.; Komarneni, S.; Yang, D. J.; Yao, X. D. *ACS Nano* **2018**, 12, 245.

[10] Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. ACS
 Catal. 2018, 8, 2236.

[11] Xiu, L. Y.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Qiu, J. S. ACS Nano **2018**, 12, 8017.

[12] Zhang, F. F.; Ge, Y. C.; Chu, H.; Dong, P.; Baines, R.; Pei, Y.; Ye, M. X.; Shen, J. F. ACSAppl. Mater. Inter. 2018, 10, 7087.

[13] Liu, J. S.; Zheng, Y.; Jiao, Y.; Wang, Z. Y.; Lu, Z. G.; Vasileff, A.; Qiao, S. -Z. Small 2018, 14, 1704073.

[14] Li, Y. J.; Zhang, H. C.; Jiang, M.; Zhang, Q.; He, P. L.; Sun, X. M. Adv. Funct. Mater. 2017, 27, 1702513.

S18

- [15] Lv, J. J.; Zhao, J.; Fang, H.; Jiang, L. P.; Li, L. L.; Ma, J.; Zhu, J. J. Small **2017**, 13,1700264.
- [16] Niu, S.; Jiang, W. -J.; Tang, T.; Zhang, Y.; Li, J. -H.; Hu J. -S. Adv. Sci. **2017**, 4, 1700084.
- [17] Du, C. C.; Shang, M. X.; Mao J. X.; Song W. B. J. Mater. Chem. A **2017**, 5, 15940.
- [18] Balogun, M. -S.; Qiu, W. T.; Huang, Y. C.; Yang, H.; Xu, R. M.; Zhao, W. X.; Li, G. -R.; Ji,
- H. B.; Tong, Y. X. Adv. Mater. 2017, 1702095.
- [19] Liu, Y. P.; Li, Q. J.; Si, R.; Li, G. -D.; Li, W.; Liu, D. -P.; Wang, D. J.; Sun, L.; Zhang, Y.; Zou,
 X. X. Adv.Mater. 2017, 29, 1606200.
- [20] Duan, J. J.; Chen, S.; Vasileff, A.; Qiao, S. Z. ACS Nano 2016, 10, 8738
- [21] Chen, P. Z.; Zhou, T. P.; Zhang, M. X.; Tong, Y.; Zhong, C. A.; Zhang, N.; Zhang, L. D.;
- Wu, C. Z.; Xie, Y. Adv. Mater. 2017, 29, 1701584.
- [22] Sivanantham, A.; Ganesan, P.; Shanmugam, S. Adv. Funct. Mater. 2016, 26, 4661.
- [23] Zhou, H. Q.; Yu, F.; Zhu, Q.; Sun, J. Y.; Qin, F.; Yu, L.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z.
 F. *Energy Environ. Sci.* **2018**, 11, 2858.
- [24] Wang, J.; Zhong, H. -X.; Wang, Z. -L.; Meng, F. -L.; Zhang, X. -B. ACS Nano 2016, 10,
 2342.
- [25] Liang, H. F.; Gandi, A. N.; Anjum, D. H.; Wang, X. B.; Schwingenschlogl, U.; Alshareef,H. N. *Nano Lett.* **2016**, 16, 7718.
- [26] Huang, L. L.; Chen, D. W.; Luo, G.; Lu, Y. -R.; Chen, C.; Zou, Y. Q.; Dong, C. -L.; Li, Y. F.;
 Wang, S. Y. Adv. Mater. 2019, 1901439.
- [27] Kuang, P. Y.; He, M.; Zou, H. Y.; Yu, J. G.; Fan, K. Appl. Catal., B 2019, 254, 15.
- [28] Zhou, B. H.; Zhang, M. C.; He, W. Y.; Wang, H. M.; Jian, M. Q.; Zhang, Y. Y. Carbon2019, 150, 21.
- [29] Cui, Z.; Ge, Y. C.; Chu, H.; Baines, R.; Dong, P.; Tang, J. H.; Yang, Y.; Ajayan, P. M.; Ye,
 M. X.; Shen, J. F. *J. Mater. Chem. A*, **2017**, 5, 1595.

S19

- [30] Xu, Y.; Tu, W. G.; Zhang, B. W.; Yin, S. M.; Huang, Y. Z.; Kraft, M; Xu, R. *Adv. Mater*. **2017**, 29, 1605957.
- [31] Zhang, X.; Xu, H. M.; Li, X. X.; Li, Y. Y.; Yang, T. B.; Liang, Y. Y. ACS Catal. 2016, 6, 580.
- [32] Li, X. P.; Wang, Y.; Wang, J. J.; Da, Y. M.; Zhang, J. F.; Li, L. L.; Zhong, C.; Deng, Y. D.;
- Han, X. P.; Hu, W. B. Adv. Mater. 2020, 32, 2003414.
- [33] Doan, T. L. L.; Tran, D. T.; Nguyen, D. C.; Kim, D. H.; Kim, N. H.; Lee, J. H. Adv. Funct.
 Mater. 2020, 2007822.
- [34] Wang, C.-P.; Bu, X.-H.; and et al. *Small* **2023**, 2305201.
- [35] Hu, X. L.; Pan, F. S.; and et al. *Green Energy Environ*. **2023**, 8, 601-611.
- [36] He, B.; Su, Z.; and et al. *CrystEngComm* **2021**, 23, 3861.
- [37] Muthurasu, A.; Kim, H. Y.; and et al. *Nano Energy*, **2021**, 106238.
- [38] Duan, X. D.; Zheng, H. G.; and et al. J. Energy. Chem. 2021, 56, 290-298.
- [39] Liu, Q.; Yang, W. Y. and et al. *Chemical Eng. J.* **2021**, 423, 130313.
- [40] Liu, J.; Leung, K. H. and et al. ACS Appl. Mater. Interfaces **2022**, 14, 4399-4408.
- [41] Farahani, F. S.; Mousavi, M. F.; and et al. J. Am. Chem. Soc. 2022, 144, 15903-15906.
- [42] Liu, N.; Guan, J. Q.; and et al. *Electrochimica Acta* **2021**, 380, 138215.
- [43] Wang, S. J.; Hu, Y.; and et al. *Appl. Catal., B* **2021**, 298, 120512.
- [44] Wang, A. S.; Wang, W. C.; and et al. *Appl. Catal., B* **2021**, 281, 119514.
- [45] Wu, Z. X.; Wang, L.; and et al. *Chinese J. Catal.* **2023**, 46, 36-47.
- [46] Zhao, S. L.; Zhu, Z. H.; and et al. *Small* **2023**, 2302414.
- [47] Wang, F. L.; Chen, Y. L.; and et al. J. Power Sources **2022**, 521, 230925.
- [48] Yao, Y.-F.; Xiao, X.-Y.; and et al. *Catal. Sci. Technol.* **2023**, 13, 6321-6330.
- [49] Zhang, Y. L.; Guo, S. H.; and et al. Composites Part B **2023**, 253, 110575.
- [50] Li, P.; Liu, S.; and et al. *Chemical Eng. J.* **2021**, 421, 129704.

- [51] Zhou, C. H.; Zhang, R. F.; and et al. *Nano Lett.* **2021**, 21, 9633-9641.
- [52] Pei, Y.; Wang, J. C.; and et al. *Chem. Commun.* **2021**, 57, 1498-1501.
- [53] Han, X. T.; Li, N. N.; and et al. *Composites Part B* **2022**, 234, 109670.
- [54] Yao, X. Y.; Zhang, W. M.; and et al. *Inorg. Chem. Front.* **2022**, 9, 2517-2529.
- [55] Manjunatha, R.; Zhang, J. J.; and et al. *Green Energy Environ*. **2022**, 7, 933-947.
- [56] Liu, Z.; Xu, W. J.; and et al. *Electrochimica Acta* **2022**, 412, 140134.
- [57] Zhou, G. Z.; Wang, L.; and et al. *Adv. Funct. Mater.* **2021**, 2107608.
- [58] Song, J. N.; Peng, S. J.; and et al. *Adv. Sci.* **2022**, 2104522.
- [59] Kumar, M.; Nagaiah, T. C.; and et al. J. Mater. Chem. A 2023, 11, 18336-18348.
- [60] Zhang, X. Y.; Shan, Y. K.; and et al. *Electrochimica Acta* **2019**, 320.
- [61] Li, S. T.; Yang, Q.; and et al. *Inorg. Chem. Front.* **2023**, 10, 3568-3576.
- [62] Nair, A. N.; Sreenivasan, S. T.; *Small* **2022**, 18, 2202648.