Supporting Information

Wadsley-Roth phase CoNb₁₁O₂₉ as a high-performance anode for

lithium-ion batteries

Huaibing Liu, Chunhua Chen*

CAS Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China

* Address correspondence to cchchen@ustc.edu.cn

Prof. C.H. Chen Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026, P. R. China

Fig. S1. (a) XRD patterns of CoNb₁₁O₂₉ at 900, 1000, 1100, 1200, and 1350 °C and (b) selected area electron diffraction (SAED) pattern of 1350 °C-sintered CoNb₁₁O₂₉.

From Fig. S1a we can see that there are two polymorphs of $CoNb_{11}O_{29}$. When the synthesis temperature is below 1250 °C, all of the XRD peaks can be confirmed to a $Ti_2Nb_{10}O_{29}$ -type crystal structure (JCPDS#72-0159), i.e., a monoclinic shear ReO₃ crystal structure with *A2/m* space group, which is a result of the low calcination temperature. When the synthesis temperature is above 1250 °C, all of the XRD peaks match those of FeNb₁₁O₂₉ (JCPDS#22-0352), i.e., an orthorhombic shear ReO₃ crystal structure with *Amma* space group, which is a result of the high calcination temperature.^{S1-S8} Moreover, the intensity of peak 1 is always lower than peak 2 in monoclinic phase. While in orthorhombic phase, the intensity of two peaks is very close. The SAED pattern of 1350 °C-sintered CoNb₁₁O₂₉ in Fig. S1b also demonstrates the orthorhombic phase structure.

Fig. S2. TEM image of $CoNb_{11}O_{29}$.

Fig. S3. Ex-situ high-resolution X-ray photoelectron spectroscopy (XPS) of $CoNb_{11}O_{29}$ powder (a) Co 2p and (b) Nb 3d spectrum.

Fig. S4. Nyquist plots and the inseted equivalent circuit of different states.

As we can see from the Nyquist plots, all the states show a semicircle in the medium-frequency region, corresponding to the charge transfer resistance (R_{ct}) at the interface between the electrodes and the electrolyte. When in the open circuit state, the R_{ct} is 328 Ω . After initially discharged to 0.8 V, the R_{ct} decreases to 144 Ω . When recharged to 3V, the R_{ct} is reduced to 60 Ω . After electrode fully activated, the charge transfer resistance diminishes, resulting in faster conduction of both electrons and Lion during the intercalation/deintercalation process.

Fig. S5. SEM images of $CoNb_{11}O_{29}$ electrode after 5000 cycles.

Fig. S6. The detailed charging step in GITT measurements of CoNb₁₁O₂₉.

The D_{Li} can be calculated via galvanostatic intermittent titration technique (GITT) curves by Fick's second law (Equation S1),

$$D_{Li} = \frac{4}{\pi\tau} \left(\frac{m_B V_m}{M_B S} \right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau} \right)^2 \left(\tau \ll \frac{L^2}{D_{Li}} \right)$$
(S1)

where τ , m_B , V_m , M_B , S, and L present the time of the applied constant current, mass of the active material, molar volume of the active material, molar mass of the active material, electrode surface area, and the thickness of the electrode, respectively. ΔE_s represents the voltage difference between two adjacent equilibrium states, and ΔE_{τ} represents the voltage variation during the constant current pulse applied process.

Fig. S7. Detailed CV curve at various scan rates.

Fig. S8. The comparison of rate performance with Cr, Fe, V-doping samples.

Atom*	Symmetry	Site	x	У	Z
M1	m	8f	0.04656	0	0.03869
M2	m	8f	0.04958	0	0.66768
M3	m	8f	0.04862	0	0.85178
M4	m	8f	0.18901	0	0.03691
M5	m	8f	0.18210	0	0.66821
M6	m	8f	0.18085	0	0.85314
01	m2m	4c	0.25	0	0.04165
02	m2m	4c	0.25	0	0.66732
03	m2m	4c	0.25	0	0.85101
O4	m	8f	0.04411	0	0.56183
05	m	8f	0.03562	0	0.14873
06	m	8f	0.03791	0	0.75654
07	m	8f	0.03282	0	0.34633
08	m	8f	0.02761	0	0.94882
09	m	8f	0.11222	0	0.03361
O10	m	8f	0.11133	0	0.66154
O11	m	8f	0.10862	0	0.85896
012	m	8f	0.17901	0	0.56033
O13	m	8f	0.18122	0	0.14452
O14	m	8f	0.17714	0	0.75704
015	m	8f	0.17961	0	0.35142
O16	m	8f	0.18443	0	0.94754

Table S1. The fractional atomic information of $CoNb_{11}O_{29}$ with *Amma* space group.

 $M = 1/11 \text{Co}^{3+} + 11/12 \text{Nb}^{5+}$

Electrode materials	Cycling performance	References	
CoNh11O20	73% capacity retention	This work	
0011011029	after 5000 cycles at 10 C		
Microsized	82.4% capacity retention		
$Cr_{0.5}Nb_{24.5}O_{62}$	after 1000 cycles at 10 C	[1/]	
$Cr_{0.5}Nb_{24.5}O_{62}$	92.8% capacity retention	[17]	
nanowires	after 1000 cycles at 10 C		
FaNh O papatuha	71.2% capacity retention after	[18]	
$\Gamma \in \mathbb{N} \cup_{11} \cup_{29}$ handube	2000 cycles at 10 C		
Submicron-sized	91.8% capacity retention after	[10]	
$V_3Nb_{17}O_{50}$	2000 cycles at 10 C		
Micron-sized	90.0% capacity retention after	[19]	
$V_3Nb_{17}O_{50}$	2000 cycles at 10 C		

Table S2. The comparison of cycling performance with Cr, Fe, V-doping samples.

References

- [S1] P. Tabero, Ceram.-Silik., 2005, 49, 126-131.
- [S2] D. Spada, M. C. Mozzati, B. Albini, P. Galinetto, I. Quinzeni, D. Capsoni and M. Bini, *Dalton Trans.*, 2018, 47, 15816-15826.
- [S3] D. Spada, I. Quinzeni and M. Bini, *Electrochim. Acta*, 2019, 296, 938-944.
- [S4] D. Spada, B. Albini, P. Galinetto, D. Versaci, C. Francia, S. Bodoardo, G. Bais and M. Bini, *Electrochim. Acta*, 2021, 393, 139077.
- [S5] D. Le Thanh, A. Guiet, E. Suard and R. Berthelot, *J. Solid State Chem.*, 2024, 330, 124444.
- [S6] R. T. Zheng, S. S. Qian, X. Cheng, H. X. Yu, N. Peng, T. T. Liu, J. D. Zhang, M. T. Xia, H. J. Zhu and J. Shu, *Nano Energy*, 2019, 58, 399-409.
- [S7] I. Pinus, M. Catti, R. Ruffo, M. M. Salamone and C. M. Mari, *Chem. Mater.*, 2014, 26, 2203-2209.
- [S8] Z. H. Lv, H. Zhu, W. W. Meng, L. C. Wei, Y. Yang, Y. F. Zhang, M. H. Ye and C. C. Li, *Appl. Phys. Rev.*, 2021, 8, 031404.