Hydrogen bonds delicately restraining photoelectric performance in

hybrid perovskite

Shengjian Qin^{1,2}, Yanglei Liu², Rui Li², Yinan Jiao², Hengbin Chen², Jinjin Zhao^{1,*}

¹ Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Inorganic Nanomaterials, Engineering Research Center of Thin Film Solar Cell Materials and Devices, Hebei Province, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China

² School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

* Corresponding author: jinjinzhao2012@163.com; jinjinzhao2023@hebtu.edu.cn

Supplementary Information

Fig. S1: Band gaps of tetragonal $MAPbI_3$ phase obtained from experimental and theoretical studies¹⁻¹⁹.

Table S1. The MA⁺ orientation, lattice parameters and relative energy ΔE of the 61 tetragonal MAPbI₃ phase. ΔE is referenced to the lowest-energy structure of the 61 models.

Structure	MA^+	Lattice parameters			ΔΕ
	orientation	a, b, c (Å)			(eV)
1	A+ A- A+ A-	8.9349	8.8135	13.0750	0.0247
2	A+ A+ A+ A-	8.8486	8.9103	13.0610	0.0045
3	A+A+A+B+	8.7999	8.9569	13.0586	0.0846
4	A+ A- A+ B+	8.8420	8.9163	13.0716	0.0137

5	A+ A- A+ B-	8.8753	8.8950	13.0401	0.1032
6	A+ A+ A- B-	8.8462	8.9312	13.0439	0.0321
7	A+ B+ B- A-	8.8700	8.9626	12.9875	0.0757
8	B+ B+ A+ A-	8.8323	8.9320	13.0505	0.1024
9	B+ B- A+ A+	8.8339	8.9297	13.0528	0.0986
10	B+ B- A- A-	8.9294	8.8308	13.0459	0.1322
11	B+ B- A- A+	8.8628	8.8751	13.0848	0.0026
12	B+A+B+A+	8.8149	8.9273	13.0848	0.0175
13	B+ A- B+ A-	8.8308	8.9630	13.0202	0.1324
14	B+ A+ B+ A-	8.8830	8.8801	13.0646	0.1363
15	B+ A+ B- A+	8.8457	8.9171	13.0652	0.1385
16	B+ A- B- A-	8.8259	8.9200	13.0830	0.0000
17	A+ A+ A+ C-	8.8611	8.8913	13.0983	0.0431
18	A- A+ A+ C+	8.8968	8.9113	13.0173	0.1404
19	A+ A+ A- C+	8.9286	8.9573	12.9651	0.1686
20	A+ A- A+ C-	8.8792	8.8687	13.0935	0.0470
21	A+ C+ C+ A-	8.9021	8.8742	13.0657	0.1546
22	A+ C+ C- A+	8.9346	8.8756	13.0252	0.1534
23	A- C+ C- A-	8.9000	8.8730	13.0639	0.1713
24	A- C+ C- A+	8.9629	8.8545	13.0438	0.0993
25	C+ C+ A+ A-	8.8981	8.8720	13.0860	0.1087
26	C+ C- A+ A+	8.9049	8.8545	13.0579	0.0381
27	C+ C- A- A-	8.8761	8.8836	13.0907	0.1062
28	C+ C- A+ A-	8.8962	8.8427	13.0995	0.0056
29	C+ C- A- A+	8.9009	8.8380	13.0936	0.0072
30	C+ A- C+ A-	8.8944	8.8738	13.1084	0.0923
31	C+ A+ C+ A-	8.9439	8.9103	13.0422	0.2063
32	C+ A+ C- A+	8.9448	8.9207	13.0134	0.1802
33	C+ A- C- A-	8.9565	8.9459	12.9966	0.2181
34	C+ A+ C- A-	8.9387	8.9377	12.9832	0.2506
35	A+A+B+C+	8.8787	8.9412	13.0252	0.0934
36	A+B+A+C+	8.8755	8.9104	13.0787	0.0926
37	A+ A+ B- C-	8.8937	8.8983	13.0287	0.0461
38	A+ B- A+ C-	8.9329	8.8245	13.0807	0.1231
39	A+ B+ A+ C-	8.8459	8.9152	13.0822	0.0532
40	A+ A- B+ C+	8.8582	8.8951	13.0751	0.0224
41	A+ A- B- C-	8.9485	8.8853	12.9648	0.1566
42	A+ A- B- C+	8.9582	8.7811	13.0802	0.1285
43	A+ A- B+ C-	8.8769	8.8734	13.0651	0.0950
44	A+ B+ A- C-	8.8863	8.9285	13.0461	0.1501
45	A+ B- A- C+	8.8560	9.0227	12.9442	0.1773
46	A+ B- C+ A-	8.9010	8.9432	12.9944	0.1577
47	A+C+B+D+	8.8999	8.8714	13.0582	0.1598
48	A- B+ C+ D+	8.9276	8.8414	13.0647	0.0128

49	A+ B+ C- D+	8.8663	8.9065	13.0486	0.0990
50	A+ B+ C+ D-	8.8936	8.8252	13.0974	0.1499
51	A+ C- B+ D+	8.8880	8.9646	13.0046	0.1559
52	A+ C+ B+ D-	8.9137	8.9576	12.9915	0.1567
53	A- B+ C- D+	8.8828	8.8810	13.0543	0.0960
54	A- B+ C+ D-	8.8829	8.8396	13.0983	0.1735
55	A+ B- C- D+	8.8877	8.8312	13.1038	0.1501
56	A+ B- C+ D-	8.8648	8.9251	13.0756	0.2484
57	A+ B+ C- D-	8.9146	8.9666	12.9043	0.2181
58	A- C+ B+ D-	8.9516	8.8169	13.0366	0.1040
59	A+ C- B- D+	8.9598	8.8122	13.0420	0.0824
60	A- B- D+ C+	8.9539	8.8831	12.9689	0.1038
61	A+ B+ D- C-	8.7794	9.0157	13.0196	0.0954
Average	-	8.8897	8.8968	13.0470	-

Table S2. Calculated and experimental structural parameters for tetragonal MAPbI₃ phase.

a (Å)	b (Å)	c (Å)	Average deviation (%)
9.03	9.03	13.36	3.25
8.88	8.88	13.05	1.31
8.76	8.76	12.95	1.50
8.85	8.85	12.64	/
	a (Å) 9.03 8.88 8.76 8.85	a (Å) b (Å) 9.03 9.03 8.88 8.88 8.76 8.76 8.85 8.85	a (Å) b (Å) c (Å) 9.03 9.03 13.36 8.88 8.88 13.05 8.76 8.76 12.95 8.85 8.85 12.64

References

1. K. P. Ong, S. Wu, T. H. Nguyen, D. J. Singh, Z. Fan, M. B. Sullivan and C. Dang, *Sci. Rep.*, 2019, **9**, 2144.

2. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050–6051.

3. M. Zhong, W. Zeng, H. Tang, L. Wang, F. Liu, B. Tang and Q. Liu, *Solar Energy*, 2019, **190**, 617-621.

4. Y. Dang, Y. Liu, Y. Sun, D. Yuan, X. Liu, W. Lu, G. Liu, H. Xia and X. Tao, *CrystEngComm*, 2015, **17**, 665-670.

5. K. Frohna, T. Deshpande, J. Harter, W. Peng, B. A. Barker, J. B. Neaton, S. G. Louie, O. M. Bakr, D. Hsieh and Marco Bernardi, *Nat. Commun.*, 2018, **9**, 1829.

6. O. Schuster, P. Wientjes, S. Shrestha, I. Levchuk, M. Sytnyk, G. J. Matt, A.

Osvet, M. Batentschuk, W. Heiss, C. J. Brabec, T. Fauster and D. Niesner, *Nano Lett.*, 2020, **20**, 3090-3097.

7. E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel and F. D. Angelis, *J. Phys. Chem. C*, 2013, **117**, 13902-13913.

8. L. Atourki, E. Vega, B. Marí, M. Mollar, H. A. Ahsaine, K. Bouabid and A. Ihlal, *Appl. Surf. Sci.*, 2016, **371**, 112-117.

9. M. N. F. Hoque, N. Islam, Z. Li and Z. Fan, ChemSusChem, 2016, 9, 2692-2698.

10. H. Kim, J. Hunger, E. Cánovas, M. Karakus, Z. Mics, M. Grechko, D. Turchinovich, S. H. Parekh and M. Bonn, *Nat. Commun.*, 2017, **8**, 687.

11. W. Geng, L. Zhang, Y. Zhang, W. Lau and L. Liu, J. Phys. Chem. C, 2014, 118, 19565-19571.

12. C. Quarti, E. Mosconi, J. M. Ball, V. D'Innocenzo, C. Tao, S. Pathak, H. J. Snaith, A. Petrozza and F. D. Angelis, *Energ. Environ. Sci.*, 2016, 9, 155-163.

13. K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith and R. J. Nicholas, *Energ. Environ. Sci.*, 2016, **9**, 962-970.

14. L. Guo, G. Xu, G. Tang, D. Fang and J. Hong, *Nanotechnology*, 2020, **31**, 225204.

15. J. Even, L. Pedesseau and C. Katan, J. Phys. Chem. C, 2014, 118, 11566-11572.

16. S. Jiang, Y. Fang, R. Li, H. Xiao, J. Crowley, C. Wang, T. J. White, W. A. G. III, Z. Wang, T. Baikie and J. Fang, *Angew Chem. Int. Edit.*, 2016, **55**, 6540-6544.

17. S. Singh, C. Li, F. Panzer, K. L. Narasimhan, A. Graeser, T. P. Gujar, A. Köhler, M. Thelakkat, S. Huettner and D. Kabra, *J. Phys. Chem. Lett.*, 2016, 7, 3014-3021.

18. W. Gao, X. Gao, T. A. Abtew, Y. Sun, S. Zhang and P. Zhang, *Physical Review B* 2016, **93**, 085202.

19. A. D. Vito, A. Pecchia, M. A. der Maur, V. Campanari, F. Martelli and A. D. Carlo, *J. Phys. Chem. Lett.*, 2021, **12**, 11659-11665.

20. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, *Inorg. Chem.*, 2013, **52**, 9019-9038.