Supporting Information

Structure identification and mechanism exploration of ultralow-content of metal-

doped Cu for efficient electrochemical production of ammonia in dilute nitrate

concentrations

Jiayu Zhan, Lu-Hua Zhang, Yaohua Hong, and Fengshou Yu*

National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (P. R. China) E-mail: <u>yfsh@hebut.edu.cn</u> (F. Yu)

Experimental Process

Chemicals

Ferric trichloride (FeCl₃), sodium hydroxide (NaOH), sodium Nitrate (NaNO₃) were purchased from aladdin. Sodium sulfate (Na₂SO₄), sodium dihydrogen phosphate (NaH₂PO₄), disodium hydrogen phosphate (Na₂HPO₄) were purchased from Bide Pharmatech Ltd. Cobalt nitrate hydrate (Co(NO₃)₂·6H₂O), copper nitrate hydrate (Cu(NO₃)₂·3H₂O) were purchased from Macklin. Nickel nitrate hydrate (Ni(NO₃)₂·6H₂O) was purchased from DAMAO. All samples require no further purification before application.

Synthesis of Fe-CuO precursors

The ultra-low content Fe was doped into CuO nanosheet by a simple solvothermal method¹. Specifically, 4.1 mg FeCl₃ was dissolved in 4 mL of anhydrous ethanol, followed by the addition of 1208 mg Cu(NO₃)₂·3H₂O. Then 40 mL of deionized water at 0 °C was added forming a homogeneous solution under stirring. Subsequently, 10 mL of 1.2 M NaOH solution was added by dropping in 1 min and stirred vigorously for 15 min. Then the mixture was transferred into a 100 mL Teflon-lined stainless steel autoclave, and heated at 130 °C for 2 h. After cooling to room temperature, the production was collected by diafiltration and washed three times with water and ethanol, then dried under vacuum at 60 °C overnight. The Co- and Ni-doped CuO were also obtained by a similar method with Co and Ni precursors, respectively.

Characterization

UV-Vis detection of ion concentrations was carried out with TU-1900. XRD patterns were collected on a JEMARM300F microscope. SEM images were taken on Czech TESCAN MIRA LMS. XPS spectroscopy was performed on a Thermo Scientific ESCALAB 250X. ¹H NMR was used to test the isotope labeling experiments on a BRUKER AVANCE 400.

Electrochemical Testing

The electrochemical investigations were carried out with the CHI760E electrochemical workstation. 4 mg of catalyst was ultrasonically for 5 min with 950 μ L of a mixture of ethanol and water (1:1), followed by adding 50 μ L of Nafion

2

solution with 30 min sonication. Then 50 µL of catalyst ink was dropped evenly on the carbon paper and the catalyst loading was 0.2 mg cm⁻². The H-type electrolytic cell was adopted for electrocatalytic nitrate reduction reaction (NO₃⁻RR). The 1 cm² carbon paper (with catalyst) was applied as the working electrode, Ag/AgCl as the reference electrode, and platinum wire as the counter electrode. The obtained Fe-CuO precursors were in-situ reduced to Fe-Cu during the NO₃⁻RR process. Postelectrolysis samples were protected by Ar before characterisation.

¹⁵N Isotope Labeling Experiments

The isotopic labeling NO_3 -RR experiments were carried out using the aforementioned electrochemical methods with $Na^{15}NO_3$ as N-source. Subsequently, 500 µL of the electrolyte was blended with 200 µL of d⁶-DMSO for ¹H NMR measurement.

Computation of conversion rate, yield and Faraday efficiency (FE)

The conversion of NO_3^- was computed by Eq. (1):

$$NO_{3}^{-} \text{ conversion} = \Delta C_{NO_{3}}^{-}/C_{0} \times 100\%$$
 (1)

The yield of NH_4^+ was computed by Eq. (2):

$$Yield_{NH_4^+} = (C_{NH_4^+} \times V)/(M_{NH_4^+} \times t \times m)$$
(2)

The FE was computed by Eq. (3) and (4):

$$FE_{NH_4^+} = (8 \times F \times c \times v) / (M_{NH_4^+} \times Q)$$
(3)

$$FE_{NH_4^+} = (2 \times F \times c \times v) / (M_{NH_4^+} \times Q)$$
(4)

where $\Delta C_{NO_3^-}$ is the change in NO₃⁻ concentration before and after electrolysis, C₀ is the onset concentration of NO₃⁻, C_{NH4}⁺ is the concentration of NH₄⁺(aq.), C_{NO2}⁻ is the concentration of NO₂⁻ (aq.), V is the electrolyte volume (30 mL), t is the electrolysis time, m is the mass of catalyst, F is the Faradaic constant (96485 C mol⁻¹), and Q is the total charge passing the electrode.

DFT calculations

The DFT calculations were performed by Vienna Ab initio Simulation Package (VASP)^{2, 3} with the projector augmented wave (PAW) method⁴. The generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE)⁵ functional was applied to treat the exchange-functional. Dispersion forces have been calculated based on Grimme's D3 parameters⁶. The energy cutoff for the plane wave basis expansion was set to 450 eV and the force on each atom less than 0.02 eV/Å was set for convergence criterion of geometry relaxation. The Brillouin zone integration is treated using $3\times3\times1$ k-point sampling. The self-consistent calculations apply a convergence energy threshold of 10^{-5} eV. A 4×4 layer of Cu (111) supercell was built as a model catalyst. To prevent interaction between periodic structures, a vacuum of 20 Å was added along the z direction. We explored the effect of solvation effects on reaction pathways using an implicit solvation model.

The binding strength of different configurations for Fe-Cu catalysts was determined by the binding energy, which is defined as:

$$\Gamma_a = E_{Fe-Cu} - E_{Cu} - E_{Fe}$$

where E_{Fe-Cu} , E_{Cu} , E_{Fe} are total energies of Fe-doped Cu (111), of Cu (111) slab, and of a single Fe, respectively. In general, the catalyst is thermodynamically more stable when Γ_a is more negative (Table S4). According to DFT calculations, Fe is most stable located at the centre of the Cu surface.

The Gibbs free energy change (Δ G) was used to determine the different adsorption modes and active sites. In general, reaction intermediates are more easily adsorbed with lower Δ G (Table S5).

The binding energy to determine the different adsorption sites of *H on Fe-Cu, which is defined as:

$$\Gamma_b = E_{Fe(H)Cu} - E_{FeCu} - E_H; \Gamma = E_{FeCu(H)} - E_{FeCu} - E_H$$

where $E_{Fe(H)Cu}$, $E_{FeCu(H)}$, E_{FeCu} , E_{H} are total energies of H adsorbed on the Fe atom, on Cu, FeCu slab, and a single H atom, respectively. Our DFT calculations show that *H prefers to adsorb on Fe sites (Table S6).

The free energies of the NO₃-RR were calculated by the equation: $\Delta G = \Delta E_{DFT} + \Delta E_{ZPE} - T\Delta S$, where ΔE_{DFT} represents the DFT electronic energy difference of every steps. The corrections for zero-point energy (ΔE_{ZPE}) and entropy variation (ΔS) were obtained through VASPKIT. The calculations were performed at a temperature of T = 298.15 K

Figure S1. Procedure for Fe-Cu synthesis.

Figure S2. a) TEM and b) high-resolution TEM images of Fe-Cu sample obtained by *in situ* electrochemical reconstitution.

Figure S3. Wide-survey XPS spectra of a) Fe-CuO and b) pure CuO.

Figure S4. Fe 2p XPS spectra of a) Fe-CuO and b) Fe-Cu.

Figure S5. a) Ultraviolet absorption and b) concentration-absorbance calibration

curves of NH_4^+ .

Figure S6. a) Ultraviolet absorption and b) concentration-absorbance calibration

curves of NO₃⁻.

Figure S7. a) Ultraviolet absorption and b) concentration-absorbance calibration

curves of NO₂⁻.

Figure S9. FE of NH_4^+ , H_2 and NO_2^- productions with a) Cu, b) $Fe_{0.25\%}$ -Cu, c) $Fe_{0.5\%}$ -Cu,

and d) Fe_{0.75%}-Cu electrodes.

Figure S10. FE of NH_4^+ , H_2 and NO_2^- productions with a) Cu, b) Fe/Cu, and c) Fe-Cu electrodes.

Figure S11. FE of NH_4^+ , H_2 and NO_2^- products with a) Co-Cu and b) Ni-Cu.

Figure S12. Cu 2p XPS spectra for a) Co-Cu and b) Ni-Cu; c) Co 2p XPS spectra of Co-

Cu; d) Ni 2p XPS spectra of Ni-Cu.

Figure S13. XRD pattern for Co-Cu and Ni-Co.

Figure S14. CV curves at various scan rates of a) Cu and b) Fe-Cu; c) the corresponding C_{dl} by ECSA of Cu and Fe-Cu samples; d) ECSA normalized LSV of Cu

and Fe-Cu samples.

Figure S15. ¹H NMR spectra of the electrolyte after the NO₃⁻ reduction at -0.6 V for 2 h with Na¹⁴NO₃⁻ and Na¹⁵NO₃⁻ as N-source, respectively.

Figure S16. In situ Raman spectra for local magnification of Fe-Cu.

Figure S17. In situ Raman spectra of NO_3 -RR with CuO catalyst in 0.5 M Na_2SO_4 and 0.1 M PBS (with 0.1 M NO_3 -N)

Figure S18. The integration area of NH_2OH and NO_2^- (left Cu and right is Fe-Cu).

Figure S19. Gibbs free energy diagram of NO_3^- to $*NO_2H$ conversion calculated with the solvation effect

Sample	(wt. %)	(at. %)
Fe-CuO	0.26	0.32
Fe-Cu	0.22	0.43

Table S1. The contents of Fe in Fe-CuO and Fe-Cu determined by ICP-MS

Table S2. The contents of Fe in Fe $_{0.25\%}$ -Cu, Fe $_{0.5\%}$ -Cu and Fe $_{0.75\%}$ -Cu determined by

	ICP-MS	
Sample	(wt. %)	(at. %)
Fe _{0.25%} -Cu	0.10	0.26
Fe _{0.5%} -Cu	0.22	0.43
Fe _{0.75%} -Cu	0.31	0.61

Table S3. Comparison of NH₄⁺ yield rate by NO₃⁻RR on various catalysts.

Catalysts	Electrolyte	Potential (vs. RHE)	NH₃ yield rate (mmol h⁻¹ g _{cat} ⁻¹)	Ref.
Fe-Cu	100 ppm NO ₃ ⁻ -N,	-0.9 V	323.1	This work
	$0.5 \text{ IVI Na}_2 SO_4$			
	100 ppm NO ₃ ⁻ -N,	-1 0 V	07.2	7
	0.5 M Na ₂ SO ₄	-1.0 V	57.5	
CuBc@Myono	50 ppm NO₃ ⁻ -N,	-1.06 V	84.7	8
CuPC@Ivixene	0.5 M Na ₂ SO ₄			-
Plasma	50 ppm NO₃⁻-N,	0 5 0 1/	82.0	9
treated Cu_2O	$0.5 \text{ M} \text{ Na}_2 \text{SO}_4$	-0.58 V	83.0	5
Pd-Cu ₂ O	50 ppm NO₃⁻-N,	1 2 1/		10
CEO	0.5 M Na ₂ SO ₄	-1.3 V	54.4	10
TiO _{2-X}	50 ppm NO₃⁻-N,	07414	45.0	11
	0.5 M Na ₂ SO ₄	-0.74 V		11
10Cu/TiO _{2-X}	200 ppm NO₃⁻-N,	0.75.1	1110	12
	0.5 M Na ₂ SO ₄	-0.75 V	114.3	12

Table S4. Binding energies (Γ) of Fe doping at different sites of Cu (111).

	On Surface		
	Centre	Edge	Corner
Γ (kJ/mol)	-301	-289	-298
Structure			
	On Subsurface		

	First Subsurface Layer	Second Subsurface Layer
Γ (kJ/mol)	-276	-269
Structure		

Table S5. Dependence of ΔG for NO₃⁻ adsorption on the adsorption site and the corresponding structure.

	Bridge adsorption		
Adsorption sites	Cu	Cu and Fe	
Δ G (eV)	0.79	0.85	
Structure			
	top adsorption		
Adsorption sites	Cu	Fe	
Δ G (eV)	1.22	1.38	
Structure			

Table S6. Binding energies (Γ) of *H at different sites of Fe and Cu.

	*H occupies the Fe	*H occupies the Cu
Г (kJ/mol)	-353	-344

Structure

References

- W. Li, L. Li, Q. Xia, S. Hong, L. Wang, Z. Yao, T.-S. Wu, Y.-L. Soo, H. Zhang, T. W. B. Lo, A. W. Robertson, Q. Liu, L. Hao and Z. Sun, *Appl. Catal. B Environ.*, 2022, 318.
- 2. K. Ohkawa, K. Hashimoto, A. Fujishima, Y. Noguchi and S. Nakayama, *J Electroanal. Chem.*, 1993, **345**, 445-456.
- 3. J. Hafner, J Comput. Chem., 2008, **29**, 2044-2078.
- 4. G.Kresse and J.Furthmüller, J Phys. Rev. B, 1996, 54,11169.
- 5. P. E. Blochl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 6. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, **132**.
- 7. W. J. Sun, H. Q. Ji, L. X. Li, H. Y. Zhang, Z. K. Wang, J. H. He and J. M. Lu, *Angew. Chem. Int. Ed.*, 2021, **60**, 22933-22939.
- 8. L.-X. Li, W.-J. Sun, H.-Y. Zhang, J.-L. Wei, S.-X. Wang, J.-H. He, N.-J. Li, Q.-F. Xu, D.-Y. Chen, H. Li and J.-M. Lu, *J. Materials. Chem. A*, 2021, **9**, 21771-21778.
- 9. Z. Gong, W. Zhong, Z. He, Q. Liu, H. Chen, D. Zhou, N. Zhang, X. Kang and Y. Chen, *Appl. Catal. B Environ.*, 2022, **305**.
- 10. Y. Xu, K. Ren, T. Ren, M. Wang, Z. Wang, X. Li, L. Wang and H. Wang, *Appl. Catal. B Environ.*, 2022, **306**.
- 11. R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu and B. Zhang, *ACS Catal.*, 2020, **10**, 3533-3540.
- 12. X. Zhang, C. Wang, Y. Guo, B. Zhang, Y. Wang and Y. Yu, *Journal of Materials Chemistry A*, 2022, **10**, 6448-6453.