Supporting Information

Rationally designed carbon-encapsulated manganese selenides composites from metal-organic frameworks for stable aqueous aqueous Zn-Mn batteries

Bin Wang¹, Wenqi Li¹, Siyuan Wang¹, Peng Xie¹, Peng Wan¹, Ying Gui¹, Ding Chen¹*

¹State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, 410082 Changsha, China

*Corresponding author: chending@hnu.edu.cn (D. Chen)

S1. CALCULATION EQUATIONS

During the electrochemical kinetic analysis-based CV curves, the peak current (*i*) and scan rate (v) can be obeyed with Equations. 1-2^{1, 2}:

$$i = av^b$$
 1

$$\log(i) = b \log(v) + \log(a)$$

where *a* and *b* are the fitted parameters. The current i(V) at a given potential *V* obey the relations of ³

$$i(V) = k_1 v + k_2 v^{1/2}$$
3

and

$$i(V)/v^{1/2} = k_1/v^{1/2} + k_2$$

Where i(V), k_1v , and $k_2v^{1/2}$ correspond to the measured current, current from the surface capacitive contribution, and current from diffusion-controlled Zn^{2+} intercalation contribution, respectively.

The ions diffusion coefficient can be well calculated from the low-frequency plots using the following equation (5):

$$D = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2}$$
 5

where R is the gas constant, T is the absolute temperature, A is the surface area of electrode, n is the number of electrons per molecule during oxidization, F is the Faraday constant, C is the concentration of ion, and σ is the Warburg factor, where the Warburg factor is related to Z' derived by the following equation (6)⁴:

$$Z' = R_s + R_{ct} + \sigma \omega^{-1/2}$$

Where ω is the angular frequency in the region, R_s is the ohmic resistance, R_{ct} is the charge-transfer resistance.

The ions diffusion coefficients were also measured by Galvanostatic Intermittent Titration Technique (GITT) and calculated based on the equation (7) below⁵:

$$D_{GITT} = \frac{4}{\pi \tau} \left(\frac{m_B V_m}{M_B S} \right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau} \right)^2$$

$$7$$

Where m_B (g) is the weight of the active materials, M_B (g mol⁻¹) is the molecular weight, V_m (cm³ mol⁻¹) is its molar volume, S (cm²) is the surface area, τ (s) is duration time of the current pulse, ΔE_s is the voltage difference measured at the end of the relaxation period for two successive steps, ΔE_{τ} is the difference between the initial voltage and final voltage during the discharge pulse time τ after eliminating the iR drop. It is also calculated D_{GITT} by equation (8) as follows⁶:

$$D_{GITT} = \frac{4L^2}{\pi\tau} \left(\frac{\Delta E_s}{\Delta E_\tau}\right)^2$$
8

L is ion diffusion length (cm), for compact electrode, it is equal to the thickness of cathode material.

S2. Results

Figure S1. XRD spectrum for (a) MIL-100, MIL-GO-*x* and (b) GO.

Figure S2. SEM images with different magnifications of GO, respectively. (a) 5 μ m, (b) 1 μ m, (c) 500 nm.

Figure S3. SEM images with different magnifications of MIL-100, respectively. (a) 5 μ m, (b) 1 μ m, (c) 200 nm.

Figure S4. SEM images with different magnifications of MIL@GO-2, respectively. (a) $5 \mu m$, (b) $1 \mu m$, (c) 200 nm.

Figure S5. SEM images with different magnifications of MIL@GO-4, respectively. (a) $5 \mu m$, (b) $1 \mu m$, (c) 200 nm.

Figure S6. SEM images with different magnifications of MIL@GO-6, respectively. (a) $5 \mu m$, (b) $1 \mu m$, (c) 200 nm.

Figure S7. (a) N_2 adsorption-desorption isotherms and (b) pore size distributions of MIL-100 and C@MnSe@GO-2.

Figure S7 shows the N₂ adsorption and desorption curves of MIL-100 and C@MnSe@GO-2 and the corresponding pore size distributions. It can be seen in Figure S7a that all curves exhibit H3-type with hysteresis loops. MIL-100 exhibits a large specific surface area of about 500.86 m² g⁻¹, whereas the specific surface area of C@MnSe@GO-2 decreases slightly from 500.86 m² g⁻¹ to 453.12 m² g⁻¹ after the introduction of GO. However, owing to the high-temperature gas-phase selenization process, a carbon coating is formed on the surface of C@MnSe@GO-2. This carbon coating serves to increase the material's pore volume and pore size, providing additional reactive sites for zinc ions. As a result, the enhanced porosity contributes to the improved reactivity and facilitates a higher capacity for zinc ion reactions.

_	Samples	$S_{\rm BET} ({ m m}^2 { m g}^{-1})$	$V_{\rm total}({ m cm^3}$	Average pore
			g ⁻¹)	size (nm)
	MIL-100	500.86	0.23	1.82
	MnSe@GO-2	453.12	0.33	2.90

Table S1. The porous structure for MIL-100 and C@MnSe@GO-2.

 S_{BET} : BET surface area, V_{total} : total pore volume calculated by density functional theory (DFT) method.

Figure S8. TGA curve of the C@MnSe@GO-2 and MIL-100@GO-2.

Figure S9. the O 1s high-resolution spectra of C@MnSe@GO-2

Figure S10. survey XPS spectrum of C@MnSe@GO-4 and C@MnSe@GO-6.

Table S2. The chemical compositions and contents of the C@MnSe@GO-x fromXPS analysis.

Samples	C (at%)	Se (at%)	O (at%)	Mn (at%)
Binding energy (eV)	~284	~54	~532	~641/653
C@MnSe@GO-2	61.87	6.29	26.97	4.87
C@MnSe@GO-4	90.16	6.49	2.14	1.21
C@MnSe@GO-6	90.37	6.33	2.11	1.19

Figure S11. SEM images with different magnifications of Bulk MnO_2 , respectively. (a) 1 μ m, (b) 500 nm, (c) 200 nm.

Figure S12. The galvanostatic charge-discharge curves for C@MnSe@GO-x.

Figure S13. Cycling performance at 100 mA g-1 for C@MnSe@GO-2.

Figure S14. HRTEM images after Cycle test at 100 mA g⁻¹ for C@MnSe@GO-2.

Figure S15. XPS images after Cycle test at 100 mA g⁻¹ for C@MnSe@GO-2, (a) XPS survey, (b) O 1s.

Samples	R _s (ohm)	R _{ct} (ohm)		
Bulk MnO ₂	3.14	623.24		
C@MnSe@GO-0	2.97	52.5		
C@MnSe@GO-2	2.58	32.2		

Table S3 R_s and R_{ct} values fitted from the corresponding EIS plots.

Table S4 *b* values fitted from the corresponding log(i) versus log(v) plots.

Samples	Anodic peak	Cathodic peak 1	Cathodic peak 2
C@MnSe@GO-0	y = 0.84 x - 0.14	y = 0.91x - 0.65	y = 0.88x - 0.48
C@MnSe@GO-2	y = 0.94x + 0.11	y = 0.72x - 0.54	y = 0.91x - 0.20

Figure S16. GITT and ionic diffusion coefficient curves during discharging for C@MnSe@GO-0.

Materials	Voltage window (V)	Electrolyte	Current density	Specific capacity (mAh g ⁻	Current density	Specific capacity (mAh g ⁻	Ref
		_		1)		1)	
Se-in-	0.1-2.1	4 m	200 mA	664.7	10000	430.6	7
$Cu[Co(CN)_6]$		$Zn(OTf)_2$	g-1	.	$mA g^{-1}$	101	0
MnS-EDO	0.8-2.0	2M	300 mA	335.7	3000	104	8
		$ZnSO_4/0.1$	g-1		$mA g^{-1}$		
		M MnSO ₄					
MnS0.5Se0.5	0.8-1.85	2M	100 mA	272.8	2000	91.8	9
		$ZnSO_4/0.2$	g-1		mA g ⁻¹		
		$M MnSO_4$	100	40-	• • • • •	100	10
VS_2	0.4-1.0	1M ZnSO ₄	100 mA	187	2000	133	10
			g ⁻¹		$mA g^{-1}$		
MnS	0.8-2.0	2M	90 mA g⁻	297.7	3000	36.6	11
		ZnSO ₄ /0.1	1		mA g ⁻¹		
		M MnSO ₄		• • • •			
MnSe@rGO	0.8-1.85	2M	0.1 C	290	5 C	178	12
		$ZnSO_4/0.1$					
		M MnSO ₄				- ·	
$MnSe_2$	0.8-1.85	2M	100 mA	452.4	2000	242.7	13
		ZnSO ₄ /0.1	g-1		mA g ⁻¹		
		M MnSO ₄	100	• • • •	10000		
MnSe-EO	0.7-1.9		100 mA	309	10000	125.9	14
		$ZnSO_4/0.1$	g-1		mA g ⁻¹		
		M MnSO ₄					
MoSSe/rGO	0.3-1.3	2M	200 mA	253.8	5000	124.2	15
		$Zn(CF_3SO_3)_2$	g-1		$mA g^{-1}$		
MnS/MnO@N-	0.8-1.9	2M	100 mA	257.8	2000	128.7	16
CF		ZnSO4/0.1	g-1		mA g ⁻¹		
	0.4.6	$M MnSO_4$				100 (. –
Layered VSe ₂	0-1.6	2M ZnSO ₄	200 mA	250.6	5000	132.6	17
			g-1		$mA g^{-1}$		10
$rGO-VSe_2$	0.2-1.4	$2M ZnSO_4$	500 mA	221.5	4000	161	18
	0 0 0 0	2) (g-1		$mA g^{-1}$	10(0	10
$MnSe_2/CNTs$	0.8-2.0	2M	100 mA	451.1	3000	126.3	19
		$ZnSO_4/0.1$	g-1		mA g ⁻¹		
	0.4.1.6	$M MnSO_4$	••••	0.41.0	1000	0001	•
$VSe_{2-x}-SS$	0.4-1.6	3M	200 mA	241.2	4000	230.1	20
N/G	0 4 1 6	$Zn(CF_3SO_3)_2$	g-1	121.0	$mA g^{-1}$	70 5	01
VSe_2	0.4-1.6	2M ZnSO ₄	100 mA	131.8	2000	/9.5	21
	0.0.1.07	23.6	g ⁻¹	450.01	$mA g^{-1}$	202 (7	T 1 ·
C(a) vin Se(a) GO-	0.8-1.85	2M	100 mA	439.81	2000	283.67	I his
2		$2nSO_4/0.2$	g-1		mA g ⁻¹		work
		M MnSO ₄					

 Table S5 Comparison of the Zn ion storage performance of C@MnSe@GO-2 and other recently reported similar Zn-ion battery cathodes.

References

- 1. L. Xie, W. Xiao, X. Shi, J. Hong, J. Cai, K. Zhang, L. Shao and Z. Sun, *Chemical Communications*, 2022, **58**, 13807-13810.
- Y. Zeng, Y. Wang, Q. Jin, Z. Pei, D. Luan, X. Zhang and X. W. D. Lou, *Angew Chem Int Ed Engl*, 2021, 60, 25793-25798.
- 3. Y. Zhang, Z. Li, L. Gong, X. Wang, P. Hu and J. Liu, *Journal of Energy Chemistry*, 2023, 77, 561-571.
- 4. P. Cai, K. Wang, J. Ning, X. He, M. Chen, Q. Li, H. Li, M. Zhou, W. Wang and K. Jiang, *Advanced Energy Materials*, 2022, **12**, 2202182.
- 5. W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M. Zhu and C. Wang, *J Am Chem Soc*, 2017, **139**, 9775-9778.
- B. Wang, Y. Zeng, P. Chen, J. Hu, P. Gao, J. Xu, K. Guo and J. Liu, ACS Applied Materials & Interfaces, 2022, 14, 36079-36091.
- L. Ma, Y. Ying, S. Chen, Z. Chen, H. Li, H. Huang, L. Zhao and C. Zhi, Advanced Energy Materials, 2022, 12, 2201322
- X. Chen, W. L. a, Y. Xu, Z. Zeng, H. Tian, M. Velayutham, W. Shi, W. Li, C. Wang, D. Reed, V. V. Khramtsov, X. L. b and X. Liu, *Nano Energy*, 2020, 75, 104869.
- 9. C. Guo, R. Zhou, X. Liu, R. Tang, W. Xi and Y. Zhu, Small, 2023, 2306237.
- T. Jiao, Q. Yang, S. Wu, Z. Wang, D. Chen, D. Shen, B. Liu, J. Cheng, H. Li, L. Ma, C. Zhi and W. Zhang, *Journal of Materials Chemistry A*, 2019, 7, 16330-16338.
- 11. S. Xu, S. Fan, W. Ma, J. Fan and G. Li, *Inorganic Chemistry Frontiers*, 2022, 9, 1481-1489.
- 12. S. Wang, G. Zeng, Q. Sun, Y. Feng, X. Wang, X. Ma, J. Li, H. Zhang, J. Wen, J. Feng, L. Ci, A. Cabot and Y. Tian, *ACS Nano*, 2023, **17**, 13256-13268.
- 13. X. Li, J. Xie, G. Liu, J. Ding, B. Zhang, H. Zheng, L. Fan, Y. Tang and X. Ma, *Journal of Alloys and Compounds*, 2023, **937**, 168424.
- A. Molaei Aghdam, S. Habibzadeh, M. Javanbakht, M. Ershadi and M. R. Ganjali, ACS Applied Energy Materials, 2023, 6, 3225-3235.
- H. Li, B. Chen, R. Gao, F. Xu, X. Wen, X. Zhong, C. Li, Z. Piao, N. Hu, X. Xiao, F. Shao, G. Zhou and J. Yang, *Nano Research*, 2023, 16, 4933-4940.
- F. Tang, X. Wu, Y. Shen, Y. Xiang, X. Wu, L. Xiong and X. Wu, *Energy Storage Materials*, 2022, **52**, 180-188.
- 17. L. Wang, Z. Wu, M. Jiang, J. Lu, Q. Huang, Y. Zhang, L. Fu, M. Wu and Y. Wu, *Journal of Materials Chemistry A*, 2020, **8**, 9313-9321.
- M. Narayanasamy, L. Hu, B. Kirubasankar, Z. Liu, S. Angaiah and C. Yan, *Journal of Alloys and Compounds*, 2021, 882, 160704.
- J. Xie, G. Liu, X. Jiang, Z. Sui and S. Gao, *Ceramics International*, 2023, 49, 10165-10171.
- 20. Y. Bai, H. Zhang, B. Xiang, X. Liang, J. Hao, C. Zhu and L. Yan, ACS Appl Mater Interfaces, 2021, 13, 23230-23238.
- Z. Wu, C. Lu, Y. Wang, L. Zhang, L. Jiang, W. Tian, C. Cai, Q. Gu, Z. Sun and L. Hu, *Small*, 2020, 16, 2000698.