Supplementary Information: Computational Discovery of Superior Vanadium Niobates Based Cathode Materials for Next-Generation All-Solid-State Lithium-Ion Battery Applications

Tanmoy Chakraborty,^{1, a)} Bartomeu Monserrat,^{2, 3} Alexandru Tănase,¹ Richard I. Walton,¹ and Bora Karasulu^{1, b)} ¹⁾ Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom ²⁾ TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE,

United Kingdom

³⁾Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom

I. EXTENDED CONVEX HULL PLOT

FIG. S1: Extended (up to 1 eV) Convex hull plot along the pseudobinary tieline of LiVO₂ and Li₃NbO₄

^{a)}Electronic mail: tanmoy.chakraborty@warwick.ac.uk

^{b)}Electronic mail: bora.karasulu@warwick.ac.uk

FIG. S2: Full electronic band structure and element-decomposed density of states of Li_3NbO_4 (upper panel) and $LiVO_2$ (lower panel).

III. ELASTIC TENSOR MATRIX ELEMENTS

A. Calculated elastic stiffness matrices (GPa) for $Li_{23}Nb_7V_2O_{32}$

139.7432	73.6551	73.1212	0.0000	3.2134	ך 0.0000 ס
73.6551	158.3085	73.6575	0.0000	4.8760	0.0000
73.1212	73.6575	139.7465	0.0000	3.1790	0.0000
0.0000	0.0000	0.0000	82.0689	0.0000	3.3352
3.2134	4.8760	3.1790	0.0000	75.9082	0.0000
0.0000	0.0000	0.0000	3.3352	0.0000	82.0713

B. Calculated elastic stiffness matrices (GPa) for $Li_{10}Nb_3VO_{14}$

194.4234	33.2563	58.3911	-19.0745	11.3319	ך 30.3011
33.2563	188.6667	56.6785	-22.5136	-0.4401	-10.5771
58.3911	56.6785	246.7917	-3.9165	-10.7868	5.0173
-19.0745	-22.5136	-3.9165	72.3946	14.3475	3.2532
11.3319	-0.4401	-10.7868	14.3475	70.4423	-20.7564
30.3011	-10.5771	5.0173	3.2532	-20.7564	52.2394

C. Calculated elastic stiffness matrices (GPa) for $\text{Li}_7\text{Nb}_2\text{VO}_{10}$

206.0873	28.6174	50.9770	-16.6605	14.4313	-20.5096
28.6174	142.6287	66.5688	-14.3289	-8.7348	-60.3516
50.9770	66.5688	227.1967	1.1374	-16.4642	5.8767
-16.6605	-14.3289	1.1374	78.1952	-1.8415	-19.4928
14.4313	-8.7348	-16.4642	-1.8415	72.4890	-20.8576
-20.5096	-60.3516	5.8767	-19.4928	-20.8576	51.2318

D. Calculated elastic stiffness matrices (GPa) for $Li_{11}Nb_3V_2O_{16}$

137.3719	73.5767	64.1961	0.6240	-0.3348	-0.7452
73.5767	181.2518	77.5652	1.4714	1.2718	-0.1313
64.1961	77.5652	147.5512	2.8896	3.1134	1.1987
0.6240	1.4714	2.8896	82.1752	2.4727	2.1740
-0.3348	1.2718	3.1134	2.4727	74.2608	0.1463
-0.7452	-0.1313	1.1987	2.1740	0.1463	80.5213

E. Calculated elastic stiffness matrices (GPa) for Li_4NbVO_6

232.0729	75.4580	51.7604	4.9748	15.7287	-11.4873
75.4580	267.3645	75.0889	19.2620	-2.6199	8.9683
51.7604	75.0889	157.1478	15.5074	44.1724	5.2564
4.9748	19.2620	15.5074	90.1656	-7.5807	-5.6583
15.7287	-2.6199	44.1724	-7.5807	68.3015	6.2763
-11.4873	8.9683	5.2564	-5.6583	6.2763	70.5198

F. Calculated elastic stiffness matrices (GPa) for $\text{Li}_5\text{NbV}_2\text{O}_8$

[295.7403	87.1525	79.7479	0.0000	0.3725	ך 0.0000
87.1525	254.0902	54.6292	0.0000	-1.0921	0.0000
79.7479	54.6292	110.5277	0.0000	-3.9448	0.0000
0.0000	0.0000	0.0000	89.3691	0.0000	-4.4797
0.3725	-1.0921	-3.9448	0.0000	88.1355	0.0000
0.0000	0.0000	0.0000	-4.4797	0.0000	113.8277

IV. BVSE COMPUTED LI⁺ MIGRATION PATHWAYS

A. $Li_{23}Nb_7V_2O_{32}$

FIG. S3: BVSE computed Li^+ migration pathways and corresponding energy barriers for $Li_{23}Nb_7V_2O_{32}$ stoichiometry.

FIG. S4: BVSE computed Li^+ migration pathways and corresponding energy barriers for $\text{Li}_{10}\text{Nb}_3\text{VO}_{14}$ stoichiometry.

FIG. S5: BVSE computed Li^+ migration pathways and corresponding energy barriers for $Li_7Nb_2VO_{10}$ stoichiometry.

FIG. S6: BVSE computed Li⁺ migration pathways and corresponding energy barriers for Li₁₁Nb₃V₂O₁₆ stoichiometry.

 $\label{eq:FIG.S7:BVSE} FIG. S7: \ BVSE \ computed \ Li^+ \ migration \ pathways \ and \ corresponding \ energy \ barriers \ for \ Li_5 NbV_2 O_8 \ stoichiometry.$

FIG. S8: Variation of total energy of (a) $Li_{23}Nb_7V_2O_{32}$ (b) $Li_{10}Nb_3VO_{14}$ (c) $Li_7Nb_2VO_{10}$ (d) $Li_{11}Nb_3V_2O_{16}$ (e) Li_4NbVO_6 and (f) $Li_5NbV_2O_8$ structures obtained from 600 K AIMD simulations during 10 ps run. For all cases, we see total energy remains constant around a mean value and thus further reflects the fact all the structures have excellent structural stability at high temperatures.

FIG. S9: Mean squared displacements plots of three novel stoichiometries at three different temperatures (600 K, 1000 K and 1400 K) extracted from AIMD simulations.