Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Rapid In-situ Growth of High-entropy Oxide Nanoparticles with Reversible Spinel Structure for Efficient Li Storage

Siyu Zhu^{1,†}, Wei Nong^{1, 2,†}, Lim Jun Ji Nicholas¹, Xun Cao¹, Peilin Zhang³, Yu Lu¹, Mingzhen Xiu⁴, Gang Wu², Shuo-Wang Yang², Zheng Liu¹, Madhavi Srinivasan^{1*}, Kedar Hippalgaonkar^{1, 5*}, Yizhong Huang^{1*}

¹ School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

² Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, Connexis, Singapore 138632, Singapore

³ School of mechanical and electrical engineering, Jiaxing Nanhu University, Jiaxing 314001, China

⁴ Energy Research Institute, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore

⁵ Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore 138634, Singapore

* Corresponding authors: madhavi@ntu.edu.sg; kedar@ntu.edu.sg; <u>yzhuang@ntu.edu.sg</u>

† Siyu Zhu and Wei Nong contributed equally to this work

Entropy estimation

The configuration/mixing entropy (S) of spinel HEO per formula is calculated by the following equation¹,

$$S=-R\sum_{ ext{site}}m_{ ext{site}}\sum_{i}^{N}x_{i, ext{site}}\ln x_{i, ext{site}},\ \sum_{i}^{N}x_{i}=1$$
 Eq. S1

where *R* is gas constant, m_{site} is the multiplicity per formula of a crystallographic site, and x_i is the molar fraction of element *i* on the corresponding site, which meets normality.

Stability evaluation

The stability of the HEO is evaluated by the reaction energy (enthalpy) of decomposing HEO phase into the respective most stable mono-metal oxides, ΔH_d , as follows,

$$(\mathrm{Li}_{0.4}\mathrm{Mn}_{0.1}\mathrm{Cu}_{0.5})[\mathrm{Mn}_{0.25}\mathrm{Fe}_{0.3}\mathrm{Zn}_{0.2}\mathrm{Ni}_{0.25}]_{2}\mathrm{O}_{4} = \frac{1}{5}\mathrm{Li}_{2}\mathrm{O} + \frac{1}{5}\mathrm{Fe}_{3}\mathrm{O}_{4} + \frac{1}{2}\mathrm{NiO} + \frac{1}{5}\mathrm{Mn}_{3}\mathrm{O}_{4} + \frac{2}{5}\mathrm{ZnO} + \frac{1}{2}\mathrm{CuO} + \frac{1}{5}\mathrm{O}_{2}$$

$$(\mathrm{Li}_{0.4}\mathrm{Mn}_{0.1}\mathrm{Co}_{0.1}\mathrm{Zn}_{0.4})[\mathrm{Mn}_{0.25}\mathrm{Fe}_{0.25}\mathrm{Co}_{0.25}\mathrm{Ni}_{0.25}]_{2}\mathrm{O}_{4} = \frac{1}{5}\mathrm{Li}_{2}\mathrm{O} + \frac{1}{6}\mathrm{Fe}_{3}\mathrm{O}_{4} + \frac{1}{2}\mathrm{NiO} + \frac{1}{5}\mathrm{Mn}_{3}\mathrm{O}_{4} + \frac{1}{5}\mathrm{Co}_{3}\mathrm{O}_{4} + \frac{2}{5}\mathrm{ZnO} + \frac{19}{60}\mathrm{O}_{2}$$

$$(\mathrm{Li}_{0.4}\mathrm{Mn}_{0.1}\mathrm{Cu}_{0.5})[\mathrm{Mn}_{0.25}\mathrm{Fe}_{0.25}\mathrm{Co}_{0.25}\mathrm{Ni}_{0.25}]_{2}\mathrm{O}_{4} = \frac{1}{5}\mathrm{Li}_{2}\mathrm{O} + \frac{1}{6}\mathrm{Fe}_{3}\mathrm{O}_{4} + \frac{1}{2}\mathrm{NiO} + \frac{1}{5}\mathrm{Mn}_{3}\mathrm{O}_{4} + \frac{1}{6}\mathrm{Co}_{3}\mathrm{O}_{4} + \frac{1}{2}\mathrm{CuO} + \frac{1}{3}\mathrm{O}_{2}$$

the ground states of Li₂O (*Fm*-3*m*), Fe₃O₄ (*Fd*-3*m*), NiO (*Fm*-3*m*), Mn₃O₄ (*I*4₁/*amd*), Co₃O₄ (*Fd*-3*m*), CuO (*C*2/*c*), ZnO (*P*6₃*mc*), O₂ (*C*2/*m*) were adopted as references. Then ΔH_d is calculated by

$$\Delta H_{\rm d} = \sum_{j} c_{j} \cdot E_{j} - E_{\rm HEO}$$
 Eq. S2

where c_i and E_j are the coefficient and DFT+U-calculated total energy (per formula) of decomposed product *i*, E_{HEO} is the DFT+U-calculated total energy per spinel formula of the corresponding HEO. The ground-state magnetic configurations are used for respective monometal oxides, e.g., Li₂O is nonmagnetic, Fe₃O₄ is ferrimagnetic, Co₃O₄ is ferromagnetic, NiO is antiferromagnetic, Mn₃O₄ is ferrimagnetic, CuO is paramagnetic and ZnO is diamagnetic.

	(/ 1	-				
Concentration	Co	Ni	Zn	Li	Fe	Mn	Cu
				(ppb)			
LFNM-CuZn		49.10	48.30	5.01	51.90	58.40	56.40
LFNM-CoZn	32.50	28.10	27.50	3.09	26.70	32.60	
LFNM-CoCu	38.80	37.70		4.66	39.40	42.90	40.30
				(mol)			
LFNM-CuZn		0.84	0.74	0.72	0.93	1.06	0.89
LFNM-CoZn	0.55	0.48	0.42	0.45	0.48	0.59	
LFNM-CoCu	0.66	0.64		0.67	0.71	0.78	0.63
			x in spir	nel $[M_x]O_4$	$, \sum x = 3$		
LFNM-CuZn		0.48	0.43	0.42	0.54	0.62	0.51
LFNM-CoZn	0.56	0.48	0.42	0.45	0.48	0.60	
LFNM-CoCu	0.48	0.47		0.49	0.51	0.57	0.46
		x in s	pinel [M _x]0	D ₄ used for	SQS gene	ration	
LFNM-CuZn		0.5	0.4	0.4	0.6	0.6	0.5
LFNM-CoZn	0.6	0.5	0.4	0.4	0.5	0.6	
LFNM-CoCu	0.5	0.5		0.5	0.5	0.6	0.5

Table S1. Metal concentrations (ppb), contents (mol) by ICP-MS method in HEOs samples, and normalized coefficients (x) in one spinel formula (M₃O₄)

 Table S2. Entropy estimates for the prepared HEOs

1		
HEO	Reduced formula	S_{config} (<i>R</i> /formula)
LFNM-CuZn	$(Li_{0.4}Mn_{0.1}Cu_{0.5})[Mn_{0.25}Fe_{0.3}Zn_{0.2}Ni_{0.25}]_2O_4$	3.70
LFNM-CoZn	$(Li_{0.4}Mn_{0.1}Co_{0.1}Zn_{0.4})[Mn_{0.25}Fe_{0.25}Co_{0.25}Ni_{0.25}]_2O_4$	3.97
LFNM-CoCu	$(Li_{0.4}Mn_{0.1}Cu_{0.5})[Mn_{0.25}Fe_{0.25}Co_{0.25}Ni_{0.25}]_2O_4$	3.71

Figure S1. a) Photograph taken during the laser preparation process. b) TEM images of carbon black substrate

Figure S2. TEM images of a) LFNM-CoCu and b) LFNM-CoZn.

Figure S3. FESEM images and EDX mappings of bulk-HEO after 800 °C annealing process.

Figure S4. a) TG and b) DSC curves of HEO nanoparticle composite electrode material samples.

Figure S5. Total energy of SQS as a function of lattice constant of spinel. The relative total energy is referenced to the lowest value in each HEO model.

Table S3. Lattice constant of representative SQS cells as obtained from Figure S5

HEO	Calculated Lattice constant (Å)	
LFNM-CuZn	8.23339	
LFNM-CoZn	8.23754	
LFNM-CoCu	8.19819	

Table S4. DFT+U-calculated total energies of metal oxides and decomposition energies of HEOs

Oxide	Za	$E_{\rm DFT} ({\rm eV})$	<i>E</i> _{DFT} (eV/formula)	$\Delta H_{\rm d}$ (eV/formula)
Co ₃ O ₄	2 ^b	-84.962	-42.481	
CuO	4	-39.431	-9.858	
Fe ₃ O ₄	2 ^b	-93.182	-46.591	
Li ₂ O	4	-57.253	-14.313	
Mn_3O_4	2 ^b	-106.650	-53.325	
NiO	8°	-80.735	-10.092	
ZnO	2	-17.859	-8.929	
O_2	1 ^b	-9.877	-9.877	
LFNM-CuZn	10	-403.618	-40.362	1.99
LFNM-CoZn	10	-426.354	-42.635	1.10
LFNM-CoCu	10	-419.748	-41.975	0.33

^a Z: the number of formula units in the calculated unit cell.

^b The primitive cell was used in the calculations.

^c A 2×2×2 supercell of the primitive cell was used to obtain antiferromagnetic configuration.

Figure S6. Metal-projected DOS of (a) LFNM-CuZn, (b) LFNM-CoZn, and (c) LFNM-CoCu.

Figure S7. DOS of metal-oxides. The first row was obtained from pure DFT (PBE) calculations, while the second row from DFT+U calculations, and the lower Hubbard band (LHB) and upper Hubbard band (UHB) of metals, and O 2p bands are indicated. The Fermi energy is set at 0 eV.

Figure S8. XPS a) Li 1s, b) Fe 2p, c) Ni 2p, d) Mn 2p, e) Cu 2p, f) Zn 2p spectra of LFNM-CuZn sample.

Material	Cycling performance	High-rate performance	Reference
(MgCoNiCuZnLi)O	417 mAh g ⁻¹ after 300 cycles @ 1.0 A g ⁻¹	$\begin{array}{c} 301 \text{ mAh } g^{-1} @ \\ 5.0 \text{ A } g^{-1} \end{array}$	2
(MgCoNiZn) _{0.65} Li _{0.35} O	610 mAh g ⁻¹ after 100 cycles @ 1.0 A g ⁻¹	680 mAh g ⁻¹ @ 1.0 A g ⁻¹	3
(FeCoNiCrMnZnLi) ₃ O ₄	522 mAh g ⁻¹ after 100 cycles@ 0.05 A g ⁻¹	173 mAh g ⁻¹ @ 2.0 A g ⁻¹	4
(FeCoNiZnMnLi) ₃ O ₄	$\begin{array}{c} 605 \text{ mAh } \text{g}^{-1} \text{ after } 100 \\ \text{cycles} @ 0.1 \text{ A } \text{g}^{-1} \end{array}$	225 mAh g ⁻¹ @ 2.0 A g ⁻¹	5
(CrCoNiZnMnLi) ₃ O ₄	460 mAh g ⁻¹ after 100 cycles@ 0.1 A g ⁻¹	145 mAh g ⁻¹ @ 2.0 A g ⁻¹	5
Li _{1.8} (FeCoZnCrMn) ₃ O _x	$\begin{array}{c} 484 \text{ mAh } \text{g}^{-1} \text{ after } 300 \\ \text{cycles} @ 0.5 \text{ A } \text{g}^{-1} \end{array}$	146 mAh g ⁻¹ @ 1.0 A g ⁻¹	6
Li _{0.1} (LiLaCaSrBa)	57 mAh g ⁻¹ after 100	37 mAh g ⁻¹ @ 1.0	
Ti _{0.9} Al _{0.1} O ₃	cycles@ 0.1 A g^{-1}	A g^{-1}	
	HEOs without cob	alt	
(FeNiCrMnZn)3O4	387 mAh g ⁻¹ after 185 cycles @ 0.5 A g ⁻¹	$\begin{array}{c} 300 \text{ mAh } g^{-1} @ \\ 2.0 \text{ A } g^{-1} \end{array}$	7
(MgTiZnCuFe)3O4	504 mAh g ⁻¹ after 300 cycles @ 0.5 A g ⁻¹	272 mAh g ⁻¹ @ 2.0 A g ⁻¹	8
(CrMnFeNiCu)3O4	$\sim 632 \text{ mAh } \text{g}^{-1} \text{ after } 250$ cycles@ 0.5 A g ⁻¹	451 mAh g ⁻¹ @ 2.0 A g ⁻¹	9
(CrMnFeNiCu)3O4	$\sim 691 \text{ mAh } \text{g}^{-1} \text{ after } 200$ cycles@ 0.5 A g ⁻¹	$\frac{480 \text{ mAh } \text{g}^{-1} @}{2.0 \text{ A } \text{g}^{-1}}$	10
(CrMnFeNiZn)3O4	$\sim 668 \text{ mAh } \text{g}^{-1} \text{ after } 200$ cycles@ 0.5 A g ⁻¹	560 mAh g^{-1} @ 3.0 A g^{-1}	11
(LiFeNiMnCuZn) ₃ O ₄ nanoparticles	865 mAh g ⁻¹ after 800 cycles@ 0.5 A g ⁻¹	$585 \text{ mAh } \text{g}^{-1} @$ $2.0 \text{ A } \text{g}^{-1},$ $436 \text{ mAh } \text{g}^{-1} @$ $5.0 \text{ A } \text{g}^{-1}$	This work

Table S5. The comparison of HEO anodes with alkali-metal and without cobalt

Figure S9. The comprehensive comparison of the performances between the LFNM-CuZn HEO nanoparticle anode (this work) and a state-of-the-art bulk-HEO anode¹¹.

Table S6. $R_{\rm b}$, $R_{\rm sei}$ and $R_{\rm ct}$ values of various electrodes by fitting the Nyquist plots

	$R_{ m b}(\Omega)$	$R_{ m sei}(\Omega)$	$R_{ m ct}\left(\Omega ight)$
LFNM-CuZn	14.2	34.0	17.8
LFNM-CoZn	22.3	53.7	26.4
LFNM-CoCu	13.3	39.2	29.4
bulk-HEO	6.33	12.0	35.9

Figure S10. a) The SEM image of HEO nanoparticle anode in LIB after 200 cycles. b) The EDX-mapping images regarding Fe, Ni, Mn, Cu, Zn, O and C elements of the electrode after 200 cycles.

HEO nanoparticle anodes	$x_1(\text{Li})$	C_1	x ₂ (Li)	C_2	x ₃ (Li)	<i>C</i> ₃
$(Li_{0.4}Mn_{0.1}Cu_{0.5})[Mn_{0.25}Fe_{0.3}Zn_{0.2}Ni_{0.25}]_2O_4$	1	125	2	249	9	1,122
$(Li_{0.4}Mn_{0.1}Co_{0.1}Zn_{0.4})[Mn_{0.25}Fe_{0.25}Co_{0.25}Ni_{0.25}]_2O_4$	1	123	2	245	9	1,104
$(Li_{0.4}Mn_{0.1}Cu_{0.5})[Mn_{0.25}Fe_{0.25}Co_{0.25}Ni_{0.25}]_2O_4$	1	123	2	246	9	1,105

 Table S7. Specific capacity limit of HEO nanoparticle anodes for the various stage of Li

 insertion

 x and C (mAh g⁻¹) indicate the molar ratio of inserted Li w.r.t the spinel formula and the specific capacity, respectively. 1, 2, and 3 denote the three stages of lithiation.

The spinel oxides, such as $LiMn_2O_4$ and $Li_4Ti_5O_{12}$, can serve as Li insertion materials due to their specific oxidation states and structure stability. However, their specific capacities are limited by factors such as the Jahn-Teller distortion and the max amount of inserted Li. The high-entropy oxides (HEOs, AB₂O₄) show improved specific capacities (~400 to ~700 mAh g⁻¹, Table S5) due to the involvement of additional Wyckoff sites for Li insertion. The chemical reactions during HEO (de)lithiation, which maintain the spinel structure whereby providing high specific capacity, are yet to be clearly revealed. Nevertheless, three stages of lithiation are suggested as the Li insertion mechanism for the spinel HEOs. During stage 1, half of the empty octahedral voids are filled with Li, resulting in a specific capacity of ~125 mAh g⁻¹:

 $A^{[8a]}B_2{}^{[16d]}O_4{}^{[32e]} + Li^+ + e^- \rightarrow Li{}^{[16c]}A{}^{[16c]}B_2{}^{[16d]}O_4{}^{[32e]} + V_{8a}$

where V_{8a} is the 8a tetrahedral vacancies that generate by ion displacement from 8a site to 16c site due to the Coulomb interaction. During stage 2, the generated empty tetrahedral voids are re-occupied, doubling the specific capacity:

 $Li^{[16c]}A^{[16c]}B_2^{[16d]}O_4^{[32e]} + V_{8a} + Li^+ + e^- \rightarrow Li^{[8a]}Li^{[16c]}A^{[16c]}B_2^{[16d]}O_4^{[32e]}$ During stage 3, all possible empty tetrahedral voids could be involved, leading to a specific capacity of ~1, 100 mAh g⁻¹:

 $Li^{[8a]}Li^{[16c]}A^{[16c]}B_2^{[16d]}O_4^{[32e]} + 9Li^+ + 9e^- \rightarrow Li^{[8a]}Li^{[8b]}Li^{[16c]}Li_6^{[48f]}A^{[16c]}B_2^{[16d]}O_4^{[32e]}$ These stages involve specific chemical reactions that maintain the spinel-like framework of the anode materials leading to high specific capacity, which might be benefited from the coexistence of multiple transition metals with mixed oxidation states, resulting in mitigating the Jahn-Teller distortion and preserving structure stability.

Appendix

1.	The relaxed atomic positions of SQS cell for LFNM-CuZn (in POSCAR format), wh	ere
th	Tc denotes the Mn atoms in tetrahedral sites.	

LFNM-O	CuZn							
8.233	39000	0000	00					
1.0	00000	0000	00000	0 0.	00000	000000	00000	0.000000000000000
0.5	500000	0000	00000	0 1.	00000	000000	00000	0.5000000000000000
0.5	500000	0000	00000	0 -0.	500000	000000	00000	1.0000000000000000
Cu	Fe	Li	Mn	Ni	0	Tc	Zn	
5	6		4	5	5	40	1	4
Direct								
0.0630)52106	1071	434	0.45545	78442	647212	0.14	15337105793171
0.4760	01329	2346	201	0.84297	31975	286145	0.95	58584694750039
0.7296	589342	6952	806	0.34936	53820	527456	0.449	91271990243746
0.1278	880552	3414	803	0.75096	08679	954169	0.250	04634970974209
0.9205	581747	3219	042	0.54861	58360	914928	0.853	38634148209994
0.1054	21873	7905	686	0.09502	48073	193549	0.196	61315371186103
0.5893	856572	6215	897	0.60520	46716	416370	0.690	60253801967653
0.7943	815601	9140	076	0.80661	30295	402161	0.10	73953993955641
0.5938	39436	6105	726	0.09773	27902	321150	0.700	06362758964002
0.7996	578390	1854	272	0.80281	26234	913202	0.596	67704396259066
0.0040	591278	6697	391	0.99776	39124	980371	0.998	84096704971464
0.5255	570812	9818	331	0.15101	85783	626952	0.050	08909173379095
0.3276	571067	9540	287	0.94728	78240	195115	0.648	85173441697683
0.674	52273	6405	505	0.05147	00929	898879	0.348	88212886644675
0.2738	876415	7404	248	0.65107	04223	408084	0.548	80254489388514
0.3932	284249	9223	810	0.40264	25420	782687	0.800	05612288623212
0.3995	57085	4766	086	0.40135	22041	739321	0.299	97264278853606
0.0019	911727	6920	326	0.49949	44146	951710	0.494	47473705069996
0.9030	95140	1962	710	0.89354	65961	829934	0.802	26124685074620
0.2096	696068	9503	575	0.19593	12731	452272	0.39	17479772204260
0.2073	35876	0158	115	0.19909	966232	226451	0.898	84016648984863
0.1975	594861	1817	273	0.70004	45671	520552	0.89	74538156757390
0.404	09445	2937	628	0.90227	33030	009178	0.30	10214011540171
0.6943	856920	4440	436	0.70570	09224	987425	0.400	00697806636495
0.5936	599059	5981	726	0.60604	41357	429340	0.208	81302641861953
0.737	53799	5800	779	0.50648	36534	026540	0.02	11429650008697
0.6253	892549	2385	406	0.41110	16575	708746	0.799	92716947280911
0.8519	945486	1177	778	0.59302	83180	517080	0.682	22460546077238
0.056	758656	3450	249	0.30472	59232	607615	0.573	32639243286144
0.9397	28115	7665	276	0.71420	37178	548080	0.90	99710823628087
0.5395	523570	0778	258	0.31482	72093	101241	0.114	47257194895204
0.6672	285811	2969	635	0.89821	212712	255608	0.793	38449958038731

0.4382776836209672	0.2117154615002121	0.8869190790852741	
0.2422120403967014	0.0060485678054718	0.0017958155407882	
0.3426437304387520	0.0889964728426449	0.2154059203182186	
0.5463983908860044	0.8072676125849583	0.1201279845625649	
0.7719591875860843	0.9874446187759318	0.9904111798784356	
0.8448861092605995	0.0804127505847703	0.7093812603157943	
0.4479367377496644	0.6937271800047355	0.8892938864739506	
0.9787966299979161	0.1968489446837367	0.3857107830929607	
0.6347406466657759	0.8954235375127553	0.2965903584264638	
0.5452481375630924	0.2978831920949290	0.6171248395794464	
0.0717018481172076	0.2813625536044313	0.0875719847119214	
0.1740265409017212	0.9057537583304622	0.2971579230003982	
0.2564015557442190	0.5025725570280883	0.9826379677460082	
0.0411826890642999	0.8036127599724168	0.0940322738323687	
0.8278206648884492	0.6146312511501435	0.2120312795169781	
0.9391990881576220	0.6901946164363792	0.4085138745539183	
0.1566119351675468	0.3964804322288416	0.3091246049259482	
0.3641096319095425	0.5894818095225958	0.2092980492854863	
0.7469123114348832	0.9967777126466189	0.5150446269043130	
0.3469428520814333	0.1091303650354831	0.7153851605688075	
0.4591599838222180	0.7202542807198284	0.3855661915661912	
0.2380138675997330	0.4926312105167909	0.4869225324424633	
0.0264622776394248	0.8023093184769934	0.6186610757412652	
0.1291445468800276	0.8946404088762065	0.8084628142249528	
0.3567216076102895	0.5872344482105163	0.7091052122533412	
0.5708614831093044	0.7855919246397534	0.5916822595264506	
0.9751555801881295	0.1934820746734260	0.9059842219645375	
0.7599182252974828	0.5095127947893303	0.5007445466489244	
0.8761931656564172	0.0946020254608868	0.1890679537854467	
0.6237754396210988	0.4087439984008725	0.3043707515478502	
0.4303351413819030	0.2148096426911579	0.3906527008920762	
0.2574904575711088	0.0093147729136049	0.4766830434342850	
0.1670816927584724	0.3939454332948671	0.7975205805171299	
0.8761765064062388	0.2478545046645664	0.7528715878498744	
0.3058618771980761	0.2947726430057287	0.5968993394550139	
0.0042694938140926	0.9925387943801809	0.5011244522210703	
0.4985502171976819	0.5018400856977223	0.0031796162877242	
0.7982127996127275	0.2980713763040157	0.1055334386006663	

2. The relaxed atomic positions of SQS cell for LFNM-CoZn (in POSCAR format), where the Rh and Tc denote the Co and Mn atoms in tetrahedral sites, respectively.

L	FNM-C	oZn										
	8.237	54000	0000	000								
	1.0	00000	0000	00000	0 0	.00000	000000	00000	0.	000000000	000000	
	0.5	00000	0000	00000	0 1	.00000	000000	00000	0.	500000000	000000	
	0.5	00000	0000	00000	0 -0.	50000	000000	00000	1.	0000000000	000000	
	Co	Fe	Li	Mn	Ni	0	Rh	Tc	Zn			
	5	5		4	5	5	40	1	1	4		
D	irect											
	0.8979	30542	7991	551	0.90529	96436	5451193	0.79	970323	383663035		
	0.3036	95840	6335	595	0.29725	524888	8565971	0.59	960067	259725158		
	0.2039	95813	0276	5708	0.20026	570535	5186084	0.40)24378	764079869		
	0.3951	68605	8171	624	0.39879	987060	989731	0.30)46317	988080574		
	0.3960	49566	1242	2223	0.90402	240014	4545868	0.30)52520	754812144		
	0.2012	27513	8034	148	0.70313	315375	5256747	0.88	366899	881509511		
	0.5840	31804	5297	582	0.59986	606651	677105	0.21	194061	701397943		
	0.7932	57167	6369	489	0.80193	358455	5310052	0.10)39647	925899737		
	0.0029	32411	0566	5913	0.01191	153300	0159112	0.50)15318	629444132		
	0.8064	96301	5042	299	0.80107	714425	5290005	0.59	985307	879665754		
	0.7260	49521	5162	.478	0.34196	509932	2996087	0.45	538118	652686129		
	0.8759	95856	3423	796	0.25153	318951	244566	0.74	421180	637175241		
	0.2730	82531	4615	5125	0.6534()06899	9324813	0.55	535489	644549145		
	0.3327	03824	9883	681	0.94556	579353	3637739	0.64	414662	887845682		
	0.7956	65019	7792	235	0.29900)79073	8959206	0.10)33331	796232604		
	0.6074	85962	1087	552	0.59418	857360	0725381	0.69	959249	329633928		
	0.0018	23726	4403	077	0.00250)02304	4891803	0.99	924379	486534998		
	0.4968	37271	4485	5495	0.49966	543525	5813181	0.99	97539	384701397		
	0.2035	09665	5802	.432	0.1983()34329	9769867	0.88	897121	609750487		
	0.6973	02185	6967	243	0.69822	210687	7823313	0.40)48847	033744568		
	0.0070	82997	3222	2180	0.49152	292291	537151	0.50)43079	633408719		
	0.5964	92642	4487	/044	0.09976	666525	5003413	0.69	966848	355100909		
	0.1018	50972	8167	390	0.10221	188638	3909502	0.20)17033	934157615		
	0.4058	85784	2053	364	0.39966	638660	0300205	0.79	923322	522990222		
	0.5254	34178	4471	819	0.32025	566088	8636820	0.10)67232	577662658		
	0.4586	79075	1160	778	0.68303	366347	7525487	0.89	923805	627372340		
	0.6569	39045	7462	236	0.90802	269677	7075120	0.78	360185	756935713		
	0.6510	44615	9787	577	0.89187	719029	9985752	0.29	951637	578744617		
	0.2270	07415	6561	789	0.01456	502785	5975004	0.99	939059	590087683		
	0.3393	92682	7818	3729	0.09908	321277	7622767	0.21	181512	547354205		
	0.5452	48398	8311	672	0.79944	193403	3989905	0.12	207361	117191730		
	0.7737	07055	7261	140	0.99129	938274	1907848	0.98	382764	333244067		
	0.8297	00357	2799	827	0.09313	312985	5001281	0.70)16634	130079700		
	0.9480	00516	3730	796	0.71150)04452	2020066	0.90)37484	123946313		

_				
	0.0783157136169800	0.3004859577327172	0.5832380494073508	
	0.8476551528701471	0.5978298433696251	0.6861768690363877	
	0.6361425455771411	0.4178705303721182	0.8098785330213825	
	0.7275293804648107	0.4932773368344941	0.0182129924478873	
	0.4427381959194990	0.1953311052502939	0.8828335861546542	
	0.9776515386130458	0.1958379147371404	0.3980048546704151	
	0.1699487616798926	0.3780062801425344	0.7890412390049000	
	0.5316436444833087	0.2860622786810392	0.6109481175510386	
	0.0670907841379897	0.2861177508282317	0.0773320176761866	
	0.1489464441531605	0.9113067927059945	0.3100867743055511	
	0.2679846345010399	0.5105324277106547	0.9869003971671326	
	0.0452118342722329	0.8123280708378426	0.0818600809509639	
	0.8236768758207421	0.6145554543876012	0.2124987794345367	
	0.9367939885917611	0.6850370834539633	0.4135612596657193	
	0.1597622431675540	0.3922529544811281	0.3252684458149864	
	0.3627749529941420	0.5823097087823956	0.1965282974802096	
	0.2509813529814110	0.4791896296716414	0.4951485899610776	
	0.3553474282300935	0.1141570382316577	0.6976668273926530	
	0.7524395866933354	0.0006835013304903	0.5135034183647467	
	0.2540408349952034	0.0097777796847465	0.4809591950518279	
	0.4618312939062038	0.7090234513118662	0.3975020643344094	
	0.1360642381120080	0.9033256849736767	0.8125055313351690	
	0.3720451235505561	0.5980742066016349	0.7044433344007857	
	0.5752153962636066	0.7766518635324317	0.5967932636874973	
	0.9611544722422354	0.1932892326949750	0.9084771026653738	
	0.7625997142097051	0.5013606981061719	0.5139398379197151	
	0.8607116402449922	0.1048142723259681	0.1779851162994260	
	0.6345425869434103	0.3980571604718033	0.2915924697857821	
	0.4245769413932634	0.2203792318987348	0.4052682945574178	
	0.0275084974657150	0.8178191134039346	0.6130270664412522	
	0.5192681425134116	0.1486168768310772	0.0486749962338970	
	0.0785812315667687	0.4467592462600646	0.1567093009685729	
	0.9264307158197109	0.5433725481750561	0.8515640764090980	
	0.6675812250915560	0.0566963726338775	0.3526721420433714	
	0.4737535832815377	0.8520425571993400	0.9527865679436216	
	0.1197524326071127	0.7534790441422200	0.2521378644741719	

3. The relaxed atomic positions of SQS cell for LFNM-CoCu (in POSCAR format), where the Tc denote the Mn atoms in tetrahedral sites, respectively.

LFNM-CoCu										
8.1981900000000										
1.0000000000000 0.000000000000 0.00000000										
0	.500000	0000	00000	00 1.000000000000000				0.5000000000000000		
0.5000000000000 -0.5000000000000 1.000000000000										
Co	Cu	Fe	Li	Mn	Ni	0	Tc			
5	5		5	4	5	5	40	1		
Direct										
0.99	6283590	7834.	399	0.00041	18096	501619	0.00	26148207047680		
0.80	2135140	6737′	727	0.80132	49268	8999552	0.10	01197841216871		
0.90	0067531	0818	993	0.89678	12464	276320	0.80	69477237860730		
0.00	1073504	4130	555	0.49811	49663	128451	0.49	94785165102820		
0.29	5345475	6446	689	0.30108	40264	959180	0.60	26398006159636		
0.47	9697936	4705.	312	0.84793	43196	5911463	0.95	23514572019115		
0.13	1358956	2206	335	0.74765	90259	175938	0.24	33674291724092		
0.72	1092608	3214.	361	0.34121	26911	674262	0.45	64121184903682		
0.52	4164242	2505	838	0.15360	45933	599701	0.04	72820089877338		
0.28	3706997	55824	467	0.64553	27582	.376239	0.54	49849300645150		
0.38	4001016	9139	916	0.40726	02206	5194688	0.80	62070572332308		
0.40	1754099	3559	984	0.90275	16190	434394	0.30	15715749242083		
0.39	6544481	41924	453	0.40217	22087	572016	0.30	15729881355792		
0.80	3870578	3296	783	0.79956	12510	464913	0.60	04005153990105		
0.99	9243575	6450	986	0.99726	01091	742573	0.49	88909450648591		
0.67	4532925	6710	998	0.05102	75302	2064233	0.35	20242674055287		
0.91	6151346	9464	949	0.55071	74124	016440	0.85	30344466725317		
0.07	9040554	81732	274	0.45019	74865	833429	0.14	69305989927153		
0.32	2099266	9629	045	0.95205	77042	476650	0.65	02999382144173		
0.60	2065115	3701	853	0.60241	09063	113826	0.69	74057009152536		
0.20	1976939	6571′	755	0.20312	95434	345247	0.40	02029765097126		
0.20	0272566	67374	472	0.19952	19992	.995523	0.89	61902146452131		
0.80	1505069	85302	252	0.29992	44922	229061	0.10	21460142287523		
0.71	0197507	7633:	554	0.69664	10211	396799	0.39	37849392115938		
0.60	8346453	2125	835	0.59812	13070	325335	0.19	64590345730157		
0.09	9555262	4957	887	0.10075	58597	527961	0.19	83382422668597		
0.49	9905902	6068	831	0.50228	69179	001908	0.99	95161843592768		
0.19	7968799	5007	042	0.70325	15039	668106	0.90	16945065419263		
0.59	5781333	3157	190	0.09680	58334	765366	0.69	67409050633053		
0.73	7614047	30684	490	0.48593	66732	353941	0.01	24376637392784		
0.84	9794168	4497	131	0.07456	68053	486392	0.70	36889955587028		
0.22	8620368	3218	904	0.01059	62939	225203	0.99	43047070973202		
0.33	7400924	2235	069	0.10237	64574	550684	0.21	64610390140216		
0.56	8520881	8989	033	0.80215	30592	634231	0.10	89908663035220		

0.6762353652575637	0.8966408442287460	0.7936831885357563
0.5604631003978489	0.3081645199003580	0.1040684131670800
0.4571323294339781	0.6922489554156606	0.8847732572369117
0.7705907672416642	0.9854614587123853	0.9983655323940352
0.6292101038384160	0.4183723491190389	0.7958384799162568
0.8439253164603638	0.5970637962999040	0.6834631643216503
0.0682129074209366	0.3082765082065999	0.5835595137550111
0.4333106857337547	0.2036646052372781	0.8896545494707414
0.9346979001415254	0.7240093183140840	0.9128281738792924
0.6625952113816483	0.8794229277080041	0.2925389727572422
0.7624019164227275	0.9901648710748422	0.5076528327714802
0.0460421581639012	0.2900419475749182	0.0869005443501940
0.1608291706959757	0.9062417917549977	0.3018719327984198
0.2673415508599032	0.5054439554577542	0.9887559659570135
0.0257352071750374	0.8176170128585016	0.0945781518681307
0.8384163031747495	0.6198409249977229	0.2012921412334050
0.9428006045817352	0.6856583724145283	0.4092811242230371
0.1506877547439499	0.3945518198078770	0.3175868330222743
0.3674205877814882	0.5896246301826198	0.1988477758488653
0.2361388601038051	0.4866517578988619	0.5031921917800259
0.3359791596562166	0.1200737068276481	0.7054122126143794
0.4753659311139652	0.7021919197716038	0.3906159196889251
0.1609692890321963	0.3832107404781353	0.7955275314665605
0.2437324354915929	0.0114314287466677	0.4869785981670855
0.0358550817219082	0.8080244541090215	0.6139780277440609
0.1131227543510574	0.9100187178046362	0.8202244740517431
0.3628825711441765	0.5989085658474889	0.7065694322823471
0.5732962537739025	0.7822449698101365	0.5894032877453802
0.9560244190969721	0.1930286488018131	0.9169960741168746
0.7574390788583922	0.5124267311229649	0.5011660714297973
0.8609302824753445	0.1036280988347616	0.1786960703448731
0.6514746442019737	0.3952071584777708	0.2871498910942824
0.4231314771733165	0.2139087486115919	0.4116084564092597
0.5184880602708323	0.3020558663528293	0.6121809990634975
0.9716644742680621	0.1915378128956297	0.4009978599113754
0.8737671162289894	0.2477954843404180	0.7482694428572025

Reference

- 1. M. Brahlek, M. Gazda, V. Keppens, A. R. Mazza, S. J. McCormack, A. Mielewczyk-Gryń, B. Musico, K. Page, C. M. Rost, S. B. Sinnott, C. Toher, T. Z. Ward and A. Yamamoto, *APL Materials*, 2022, **10**, 110902.
- X. Liu, Y. Xing, K. Xu, H. Zhang, M. Gong, Q. Jia, S. Zhang and W. Lei, *Small*, 2022, 18, 2200524.
- 3. E. Lökçü, Ç. Toparli and M. Anik, ACS Applied Materials & Interfaces, 2020, 12, 23860-23866.
- 4. C. Duan, K. Tian, X. Li, D. Wang, H. Sun, R. Zheng, Z. Wang and Y. Liu, *Ceramics International*, 2021, **47**, 32025-32032.
- 5. K.-H. Tian, C.-Q. Duan, Q. Ma, X.-L. Li, Z.-Y. Wang, H.-Y. Sun, S.-H. Luo, D. Wang and Y.-G. Liu, *Rare Metals*, 2022, **41**, 1265-1275.
- 6. B. Petrovičovà, W. Xu, M. G. Musolino, F. Pantò, S. Patanè, N. Pinna, S. Santangelo and C. Triolo, *Applied Sciences*, 2022, **12**, 5965.
- 7. B. Xiao, G. Wu, T. Wang, Z. Wei, Y. Sui, B. Shen, J. Qi, F. Wei, Q. Meng, Y. Ren, X. Xue, J. Zheng, J. Mao and K. Dai, *Ceramics International*, 2021, **47**, 33972-33977.
- 8. H. Chen, N. Qiu, B. Wu, Z. Yang, S. Sun and Y. Wang, *RSC Advances*, 2020, **10**, 9736-9744.
- 9. T. X. Nguyen, C.-C. Tsai, J. Patra, O. Clemens, J.-K. Chang and J.-M. Ting, *Chemical Engineering Journal*, 2022, **430**, 132658.
- T. X. Nguyen, J. Patra, C.-C. Tsai, W.-Y. Xuan, H.-Y. T. Chen, M. S. Dyer, O. Clemens, J. Li, S. B. Majumder, J.-K. Chang and J.-M. Ting, *Advanced Functional Materials*, 2023, 33, 2300509.
- J. Patra, T. X. Nguyen, C.-C. Tsai, O. Clemens, J. Li, P. Pal, W. K. Chan, C.-H. Lee, H.-Y. T. Chen, J.-M. Ting and J.-K. Chang, *Advanced Functional Materials*, 2022, 32, 2110992.