Supporting information

Toward Regulating Biodegradation in Stages of Polyurethane Copolymer with Bicontinuous Microphase Separation

Man Wang ${ }^{a}$, Hong-ying Liu ${ }^{b}$, Neng-wen $\mathrm{Ke}^{b *}$, Gang Wu ${ }^{a}$, Si-chong Chen ${ }^{a *}$, Yu-zhong Wang ${ }^{a}$

${ }^{a}$ The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China.
${ }^{b}$ Department of Pancreatic Surgery, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University.
*Corresponding authors: kenengwen@scu.edu.cn (N.-W. Ke),
chensichong@scu.edu.cn (S.-C. Chen)

Experimental section

Synthesis of HO-PPDO ${ }_{41.15 \%}$-c-PCL-OH. The predetermined amounts of PDO, ε-CL and BDO (as specified in the polymerization Table 1) were charged into a rigorously dried two-necked flask, then the reactor was immersed into a preheated oil bath ($T=140^{\circ} \mathrm{C}$), a predetermined amount of stannous octoate toluene solution $(0.5 \mathrm{~mol} \mathrm{L-}$ ${ }^{1}$, the molar ratio of overall monomer and $\mathrm{Sn}(\mathrm{Oct})_{2}$ was 10000:1) was injected into the reactor to perform the reaction for 48 h . After reaction, the reactor was cooled to room temperature. The crude product was purified by dissolving in CHCl_{3} and then precipitated into excess of cold methanol, filtered, washed thrice with methanol to remove unreacted monomer, and dried in a vacuum oven at $40^{\circ} \mathrm{C}$ to a constant weight.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$) $\delta 4.26\left(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 2 \mathrm{H} ;-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-; \mathrm{PDO}\right)$, 4.15 (t, J = $\left.6.7 \mathrm{~Hz}, 2 \mathrm{H} ;-\mathrm{CH}_{2} \mathrm{O}-; \mathrm{CL}^{*}-\mathrm{PDO}\right), 4.12\left(\mathrm{~s}, 2 \mathrm{H} ;-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-;\right.$ PDO), 4.05 (t, J = 6.7 Hz, 2H; -CH2O-; CL), 3.77 (t, J = 4.7 Hz, 2H; -C(O)- $\left.\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-; ~ P D O\right), ~ 2.36$ (t, J = 7.5 Hz, 2H; -C(O)CH $\left.2_{2} ; \mathrm{CL}^{*}-\mathrm{PDO}\right), 2.29\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H} ;-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}-; \mathrm{CL}\right), 1.65-1.60$ ($\mathrm{m}, 4 \mathrm{H} ;-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2}-$ and $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-; \mathrm{CL}$), 1.40-1.30 (m, $2 \mathrm{H} ; \mathrm{CH}_{2} ; \mathrm{CL}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{RT}$) $\delta 173.65,173.6$ and 173.5 (-C(O)-; CL), 170.3 (-$\mathrm{C}(\mathrm{O})-;$ PDO), $69.7\left(-\mathrm{C}(\mathrm{O})-\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-; ~ P D O\right), 68.5\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-; ~ P D O\right) 64.8(-$ $\left.\mathrm{CH}_{2} \mathrm{O}-; \mathrm{CL}^{*}-\mathrm{PDO}\right), 64.3\left(-\mathrm{CH}_{2} \mathrm{O}-; \mathrm{CL}-\mathrm{CL}\right), 63.4$ (-C-(O) $\left.\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-; ~ P D O\right), 34.3,34.2$ and $34.1\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}-\mathrm{CL}\right) 28.5,28.4,25.7,25.6,24.7$ and $24.6\left(-\mathrm{CH}_{2} ; \mathrm{CL}\right)$.

Synthesis of HO-PCL-OH. The predetermined amounts of ε-CL and BDO were charged into a rigorously dried two-necked flask, then the reactor was immersed into a preheated oil bath $\left(T=130^{\circ} \mathrm{C}\right)$, a predetermined amount of stannous octoate toluene solution ($0.5 \mathrm{~mol} \mathrm{~L}^{-1}$, the molar ratio of overall monomer and $\mathrm{Sn}(\mathrm{Oct})_{2}$ was 10000:1) was injected into the reactor to perform the reaction for 48 h . After reaction, the reactor was cooled to room temperature. The crude product was purified by dissolving in CHCl_{3} and then precipitated into excess of cold methanol, filtered, washed thrice with methanol to remove unreacted monomer, and dried in a vacuum oven at $40^{\circ} \mathrm{C}$ to a constant weight. ${ }^{1}$
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d, RT) $\delta 4.05$ (t, J = $\left.6.7 \mathrm{~Hz}, 2 \mathrm{H} ;-\mathrm{CH}_{2} \mathrm{O}-\right), 2.30(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H} ;-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}-\mathrm{)}, 1.67-1.60\left(\mathrm{~m}, 4 \mathrm{H} ;-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$ and $\left.-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}-\right)$, 1.41-1.33 (m, $2 \mathrm{H} ; \mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}$ NMR (400 MHz, Chloroform-d, RT) $\delta 173.54$ (-C(O)-), 64.14(-CH2O-), 34.12($\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}-\mathrm{I}, 28.35,25.53,24.58\left(-\mathrm{CH}_{2}\right)$.

The number-average molecular weights of $\mathrm{HO}-\mathrm{PPDO}_{41.15 \%-\mathrm{c}-\mathrm{PCL}-\mathrm{OH} \text { (around }}$ $5000 \mathrm{~g} / \mathrm{mol}$) and $\mathrm{HO}-\mathrm{PCL}-\mathrm{OH}$ (around $5400 \mathrm{~g} / \mathrm{mol}$), which are very close to the theoretical value, are calculated from nuclear magnetic resonance (NMR) spectroscopy analysis via the following equation, respectively.
$\mathrm{M}_{\mathrm{n}}\left(\mathrm{HO}-\mathrm{PPDO}_{41.15 \%}-\mathrm{c}-\mathrm{PCL}-\mathrm{OH}\right)=102 \times \mathrm{I}_{3.78} / \mathrm{I}_{3.66} \times 2+114 \times \mathrm{I}_{2.56} / \mathrm{I}_{3.66} \times 2+90$
$\mathrm{M}_{\mathrm{n}}(\mathrm{HO}-\mathrm{PCL}-\mathrm{OH})=114 \times \mathrm{I}_{2.56} / \mathrm{I}_{3.66} \times 2+90$
where $\mathrm{I}_{3.76}$ and $\mathrm{I}_{3.66}$ are the peak integrations of the corresponding methylene protons of HO-PPDO-OH connected to ester bonds and hydroxyl groups, respectively; where $\mathrm{I}_{2.56}$ and $\mathrm{I}_{3.66}$ are the peak integrations of the corresponding methylene protons of HO-PCL-OH connected to ester bonds and hydroxyl groups, respectively; and 114, 102 , and 90 are the molecular weights of caprolactone, PDO, and BDO, respectively. ${ }^{2}$

Copolymer randomness was evaluated by determining the sequence distribution in each copolymer. Therefore, the degree of randomness $(R)^{3}$ of the copolymer chains can be calculated from the equation below:

$$
\begin{aligned}
& \mathrm{R}=100 / L_{\mathrm{PDO}}+100 / L_{\mathrm{CL}} \\
& L_{\mathrm{PDO}}=I_{\mathrm{PDO}-\mathrm{PDO}} * I_{\mathrm{CL}-\mathrm{PDO}}{ }^{*+1} \\
& L_{\mathrm{CL}}=I_{\mathrm{CL}-\mathrm{CL}}{ }^{*} /_{\mathrm{PDO}-\mathrm{CL}}{ }^{*+1}
\end{aligned}
$$

where $I_{\text {PDO-pDO* }}(4.35-4.40 \mathrm{ppm})$ and $I_{\text {CL-PDO* }}(4.25-4.30 \mathrm{ppm})$ indicate the peak intensity of PDO-PDO* and CL-PDO* sequences of the copolymer calculated from ${ }^{1} \mathrm{H}$ NMR, and $I_{\mathrm{CL}-\mathrm{CL}}$ ($2.25-2.33 \mathrm{ppm}$) and $I_{\text {PDO-CL* }}$ (2.33-2.39ppm) represent the peak intensity of CL-CL* and PDO-CL* sequences of the copolymer determined by ${ }^{1} \mathrm{H}$ NMR.

Table S1: Ring-opening polymerization results of prepolymer.

Prepolymer	PDO (mol)	$\mathrm{CL}(\mathrm{mol})$	[M]/[Cat.]/[I]	Conv.pDo ${ }^{\text {a }}$ (\%)	Conv.cı ${ }^{\text {a }}$ (\%)	M_{n}	
							\boxplus^{b}
						${ }^{b}(\mathrm{Da})$	
HO-PPDO ${ }_{41 \%-\mathrm{c}-\mathrm{PCL}-\mathrm{OH}}$	0.5	0.5	1:10000:40	73.2	81.1	5031	1.31
$\mathrm{HO}-\mathrm{PCL}-\mathrm{OH}$	0	1.0	1:10000:40	--	79.3	5392	1.37

${ }^{a}$ Monomer conversion measured by ${ }^{1} \mathrm{H}$ NMR of the quenched solution. ${ }^{b}$ Number-average molecular weight $\left(M_{n}\right)$ and dispersity index $\left(~\left(=M_{w} / M_{n}\right)\right.$, determined by gel permeation chromatography (GPC) at $30^{\circ} \mathrm{C}$ in CHCl_{3}.

Fig S1. The photographs of the original HO-PPDO $41.15 \%-\mathrm{c}-\mathrm{PCL}-\mathrm{OH}$ (left) and HO-PCL-

$$
\mathrm{OH} \text { (right). }
$$

Fig S2. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{HO}-\mathrm{P}\left(\mathrm{DO}_{41.15 \%-\mathrm{C}} \mathrm{CL}\right)-\mathrm{OH}$.

Fig S3: The schematic diagram of preparing Artificial pancreatic juice.
Table S2: Chemical Composition and Molecular Characteristics of PCL-b-CrP-U.

Samples	$P^{1}(\mathrm{~g})$	$P^{2}(\mathrm{~g})$	PDO (\%)	PCL (\%)	$M_{n}{ }^{b}(\mathrm{Da})$	$Ð^{b}$
PCL-U	0	30.00	0	100	68582	1.53
PCL-b-CrP $10-\mathrm{U}$	12.12	20.00	9.25	90.75	59431	1.46
PCL-b-CrP $20-\mathrm{U}$	19.91	10.00	21.15	78.85	60371	1.40
PCL-b-CrP $25-\mathrm{U}$	48.84	20.00	25.34	74.66	53590	1.52

 weight $\left(M_{n}\right)$ and dispersity index $\left(~ Đ=M_{w} / M_{n}\right)$, determined by gel permeation chromatography (GPC) at $30^{\circ} \mathrm{C}$ in CHCl_{3}.

Table S3: The FT-IR spectrum of PCL-b-CrP-U samples mainly shows the peak attribution table.

Samples	-NH (stretching bands)	$\mathrm{C}=0$	$\begin{aligned} & \text {-C- } \\ & \mathrm{NH}- \end{aligned}$	$-\mathrm{CH}_{2}$	$-\mathrm{CH}_{3}$	-NH (bending vibrations)	C-O-C
PCL-U	3324	1721	1469	2942	2865	1530	--
PCL-b-CrP ${ }_{10}-\mathrm{U}$	3323	1721	1469	2942	2865	1535	$\begin{aligned} & 1240 / 11 \\ & 88 / 1104 \end{aligned}$
PCL-b-CrP ${ }_{20}-\mathrm{U}$	3323	1722	1462	2942	2865	1535	$\begin{aligned} & 1240 / 11 \\ & 88 / 1104 \end{aligned}$
PCL-b-CrP ${ }_{25}-\mathrm{U}$	3323	1722	1460	2941	2865	1535	$\begin{aligned} & 1240 / 11 \\ & 88 / 1104 \end{aligned}$

Fig S4. The TGA curves of PCL-b-CrP-U samples.
Table S4. The data of TGA curves of PCL-b-CrP-U samples.

Samples	$T_{5 \%}\left({ }^{\circ} \mathrm{C}\right)$	$T_{\max }\left({ }^{\circ} \mathrm{C}\right)$
PCL-U	288.8	337.4
PCL-b-CrP ${ }_{10}-\mathrm{U}$	255.9	322.4
$\mathrm{PCL-b-CrP}_{20}-\mathrm{U}$	267.0	309.8
$\mathrm{PCL-b-CrP}_{25}-\mathrm{U}$	289.5	306.8

Fig S5. The DSC of PCL-b-CrP-U. (A): to the cooling scans; (B): the second heating scan.

Table S5. Thermal Characterization of PCL-b-CrP-U.

Samples	$\left.T_{\mathrm{g}}{ }^{\mathrm{c}}{ }^{\circ} \mathrm{C}\right)$	$T_{\mathrm{m}}{ }^{\mathrm{a}}$	$\Delta H_{\mathrm{m}}{ }^{\mathrm{a}}$	$T_{\mathrm{c}}{ }^{\mathrm{b}}$	$\Delta H_{\mathrm{c}}{ }^{\mathrm{b}}$	$T_{\mathrm{m}}{ }^{\mathrm{c}}$	$\Delta H_{\mathrm{m}}{ }^{\mathrm{c}}$	$\mathrm{X}_{\mathrm{c}, \mathrm{PCL}}{ }^{\mathrm{c}}$
		(C)	(g)	$\left({ }^{\circ} \mathrm{C}\right)$	$(\mathrm{J} / \mathrm{g})$	$\left({ }^{\circ} \mathrm{C}\right)$	$(\mathrm{J} / \mathrm{g})$	$(\%)$
PCL-U	-60.80	55.43	66.75	21.43	55.90	53.74	79.96	39.72
PCL-b-CrP ${ }_{10}-\mathrm{U}$	-58.88	50.56	71.74	9.24	53.14	50.31	55.22	38.98
PCL-b-CrP ${ }_{20}-\mathrm{U}$	-53.17	55.96	14.15	-0.58	22.20	41.85	49.65	19.59
PCL-b-CrP $\mathrm{P}_{25}-\mathrm{U}$	-54.14	45.56	9.158	-0.84	24.28	40.57	21.96	19.32

 cooling scans; ${ }^{\text {crecorded according to the second heating curve. }}$

Table S6. Mechanical performances of PCL-b-CrP-U samples.

Samples	Elasticity Modulus (MPa)	Tensile strength (MPa)	Elongation at break (\%)	Hardness (HA)
PCL-U	257.1 ± 18.0	40.6 ± 2.1	3646 ± 78	69
$\mathrm{PCL}-\mathrm{b}-\mathrm{CrP}_{10}-\mathrm{U}$	220.9 ± 22.1	23.0 ± 1.9	2761 ± 62	62
$\mathrm{PCL}-\mathrm{b}-\mathrm{CrP}_{20}-\mathrm{U}$	40.2 ± 2.2	7.6 ± 1.1	1520 ± 17	49
$\mathrm{PCL}-\mathrm{b}-\mathrm{CrP}_{25}-\mathrm{U}$	39.5 ± 4.4	7.5 ± 0.8	1401 ± 23	47

Table S7. Summary of cyclic tensile test of PCL-b-CrP ${ }_{20}-\mathrm{U}$ and $\mathrm{PCL}-\mathrm{b}-\mathrm{CrP}_{25}-\mathrm{U}$ in the first loading-unloading cycle.

Samples	Strain (\%)	Hysteresis		Elastic recovery ratio (\%)
		Value ($\mathrm{MJ} / \mathrm{m}^{-3}$)	Ratio (\%)	
PCL-b-CrP ${ }_{20}$-U	30	64.257	64.81	70.00
PCL-b-CrP ${ }_{20}-\mathrm{U}$	50	136.027	67.30	66.01
PCL-b-CrP $25-\mathrm{U}$	30	56.215	59.51	71.7
PCL-b-CrP ${ }_{25}$-U	50	126.965	63.27	67.3

Fig S6. The transmittance of PCL-b-CrP-U film after storage for one months at visible wavenumber.

Fig S7. The contact angle measurements for $\mathrm{PCL}-\mathrm{b}-\mathrm{CrP}-\mathrm{U}$ samples.

Table S8: The Change data of mechanical properties of PCL-U samples after degradation for 10 weeks.

Degradation time (week)	Elasticity Modulus (MPa)	Tensile strength (MPa)	Elongation at break (\%)
0	257.6 ± 12.2	41.0 ± 1.9	3646 ± 87
1	245.1 ± 9.6	40.4 ± 2.3	3497 ± 117
2	240.1 ± 18.7	39.1 ± 2.1	3396 ± 287
3	207.8 ± 21.1	39.9 ± 3.4	3380 ± 253
4	199.1 ± 20.9	38.4 ± 2.4	3297 ± 159
5	216.7 ± 19.9	38.5 ± 3.1	3181 ± 279
7	179.2 ± 7.8	35.6 ± 5.8	3204 ± 199
8	172.1 ± 11.1	35.3 ± 5.1	3134 ± 102
9	178.5 ± 13.2	32.5 ± 4.9	3160 ± 99
10	175.9 ± 15.1	35.7 ± 5.7	3054 ± 176
172.2 ± 10.2	34.2 ± 5.9	3016 ± 232	

Table S9: The Change data of mechanical properties of PCL-b-CrP $10-\mathrm{U}$ samples after degradation for 10 weeks.

Degradation time	Elasticity	Tensile	Elongation at
(week)	Modulus (MPa)	strength (MPa)	break (\%)

0	220.4 ± 6.7	23.0 ± 1.2	2761 ± 63
1	215.6 ± 5.9	18.9 ± 1.1	1233 ± 101
2	218.1 ± 7.1	16.5 ± 1.7	643 ± 74
3	214.3 ± 5.2	15.4 ± 1.4	627 ± 89
4	204.4 ± 5.3	15.0 ± 0.9	397 ± 57
5	202.3 ± 4.9	14.8 ± 1.7	337 ± 149
6	200.9 ± 6.1	15.9 ± 2.1	321 ± 79
7	206.8 ± 7.6	15.5 ± 2.7	312 ± 113
9	197.4 ± 9.9	15.2 ± 3.1	216 ± 98
10	199.0 ± 8.9	13.9 ± 3.2	150 ± 101
	206.1 ± 9.1	9.9 ± 2.7	120 ± 81

Table S10: The Change data of mechanical properties of $\mathrm{PCL}-\mathrm{b}-\mathrm{CrP}_{20}-\mathrm{U}$ samples after degradation for 10 weeks.

Degradation time (week)	Elasticity Modulus (MPa)	Tensile strength (MPa)	Elongation at break (\%)
0	43.6 ± 1.6	7.6 ± 0.8	1520 ± 65
1	42.7 ± 3.4	6.0 ± 0.5	661 ± 147
2	49.8 ± 2.1	7.1 ± 0.7	588 ± 211
3	52.1 ± 3.3	6.0 ± 0.5	552 ± 173
4	38.9 ± 1.8	5.7 ± 0.3	449 ± 119
5	39.3 ± 2.6	6.6 ± 0.6	331 ± 111
7	40.7 ± 1.9	6.1 ± 1.1	257 ± 133
8	41.1 ± 2.0	6.7 ± 0.9	250 ± 97
9	39.4 ± 2.1	6.0 ± 0.8	130 ± 146
10	30.9 ± 3.9	4.6 ± 1.2	71 ± 41
30.7 ± 3.1	3.5 ± 1.4	16 ± 7	

Table S11: The Change data of mechanical properties of $\mathrm{PCL}-\mathrm{b}-\mathrm{CrP}_{25}-\mathrm{U}$ samples after
degradation for 10 weeks.

Degradation time (week)	Elasticity Modulus (MPa)	Tensile strength (MPa)	Elongation at break (\%)
0	39.6 ± 5.4	7.5 ± 1.1	1401 ± 89
1	37.4 ± 4.7	5.9 ± 0.7	702 ± 136
2	33.9 ± 5.1	5.5 ± 0.4	625 ± 117
3	31.2 ± 2.2	4.8 ± 0.3	487 ± 193
4	32.6 ± 1.9	4.6 ± 0.8	312 ± 159
5	33.1 ± 4.1	4.8 ± 0.6	101 ± 67
6	32.4 ± 3.7	4.4 ± 0.9	84 ± 61
7	26.8 ± 2.6	1.5 ± 0.7	9 ± 5

Table S12: The changes of PCL mass fraction(φ_{PcL}) during degradation of $\mathrm{PCL}-\mathrm{b}-\mathrm{CrP}_{10^{-}}$ U, PCL-b-CrP ${ }_{20}-\mathrm{U}, ~ \mathrm{PCL}-\mathrm{b}-\mathrm{CrP}_{25}-\mathrm{U}$.

	$\varphi_{\text {PCL }}$ (\%)				
samples	0	3	6	10	
PCL-U	100	100	100	100	
PCL-b-CrP $10-\mathrm{U}$	91.64	92.01	92.30	92.69	
PCL-b-CrP ${ }_{20}-\mathrm{U}$	80.65	81.13	81.33	81.73	
PCL-b-CrP ${ }_{25}-\mathrm{U}$	78.38	82.54	82.71	83.03	

$$
\chi_{c}, P C L(\%)=\frac{\Delta H_{m}, P C L}{\Delta H_{0, P C L} \times(\varphi P C L)} \times 100 \%
$$

where H_{m} is the experimental melting enthalpy and w is the weight fraction of the corresponding component in the blend. $\Delta \mathrm{H}_{0, \mathrm{PcL}}=139 \mathrm{~J} / \mathrm{g}$ for PCL were used according to reported enthalpy of melting of 100% crystalline PCL.

Table S13: The changes of PPDO and PCL content during degradation of PCL-b-CrP 10^{-} $\mathrm{U}, ~ \mathrm{PCL}-\mathrm{b}-\mathrm{CrP}_{20} \mathrm{U}, ~ \mathrm{PCL}-\mathrm{b}-\mathrm{CrP}_{25}-\mathrm{U}$.

samples	PPDO content (\%)				PCL content (\%)			
	Degradation time (week)				Degradation time (week)			
	0	3	6	10	0	3	6	10
PCL-U	--	--	--	--	100	100	100	100
PCL-b-CrP ${ }_{10}-\mathrm{U}$	9.25	8.85	8.53	8.10	90.75	91.15	91.47	91.90
$\mathrm{PCL}-\mathrm{b}-\mathrm{CrP}_{20}-\mathrm{U}$	21.15	20.63	20.41	19.98	78.85	79.37	79.58	80.01
$\mathrm{PCL}-\mathrm{b}-\mathrm{CrP}_{25}-\mathrm{U}$	25.34	19.11	18.94	18.59	74.66	80.89	81.06	81.41

REFERENCES

1, A. Stjerndahl, A. Finne-Wistrand, A.-C. Albertsson, C. -M Backesjo, U. Lindgren, J. Biomed. Mater. Res., Part A. 2008, 87A, 1086.

2, D. -D. Yang, C. Wu, G. Wu, S. -C Chen, and Y. -Z. Wang, Macromolecules 2021, 54, 291.

3, T. Q. Wang, H. -Z. Zhao, Y. Liu, J. -Y. Hao, J. Appl. Polym. Sci., 2013, 2978.

