Supporting information

Toward Regulating Biodegradation in Stages of Polyurethane Copolymer with Bicontinuous Microphase Separation

Man Wang^{*a*}, Hong-ying Liu^{*b*}, Neng-wen Ke^{*b**}, Gang Wu^{*a*}, Si-chong Chen^{*a**}, Yu-zhong Wang^{*a*}

^{*a*} The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China.

^b Department of Pancreatic Surgery, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University.

*Corresponding authors: <u>kenengwen@scu.edu.cn</u> (N.-W. Ke), <u>chensichong@scu.edu.cn</u> (S.-C. Chen)

Experimental section

Synthesis of HO-PPDO_{41.15%}-c-PCL-OH. The predetermined amounts of PDO, ε -CL and BDO (as specified in the polymerization Table 1) were charged into a rigorously dried two-necked flask, then the reactor was immersed into a preheated oil bath (*T*=140 °C), a predetermined amount of stannous octoate toluene solution (0.5mol L⁻¹, the molar ratio of overall monomer and Sn(Oct)₂ was 10000:1) was injected into the reactor to perform the reaction for 48h. After reaction, the reactor was cooled to room temperature. The crude product was purified by dissolving in CHCl₃ and then precipitated into excess of cold methanol, filtered, washed thrice with methanol to remove unreacted monomer, and dried in a vacuum oven at 40 °C to a constant weight.

¹H NMR (400 MHz, CDCl₃, RT) δ 4.26 (t, J = 4.6 Hz, 2H; -C(O)CH₂OCH₂CH₂O-; PDO), 4.15 (t, J = 6.7 Hz, 2H; -CH₂O-;CL*-PDO), 4.12 (s, 2H; -C(O)CH₂OCH₂CH₂O-; PDO), 4.05 (t, J = 6.7 Hz, 2H; -CH₂O-; CL), 3.77 (t, J = 4.7 Hz, 2H; -C(O)- CH₂OCH₂CH₂O-; PDO), 2.36 (t, J = 7.5 Hz, 2H; -C(O)CH₂-;CL*-PDO), 2.29 (t, J = 7.5 Hz, 2H; -C(O)CH₂-; CL), 1.65-1.60 (m, 4H; -C(O)CH₂CH₂- and -CH₂CH₂O-; CL), 1.40-1.30 (m, 2H; CH₂; CL).

¹³C NMR (100 MHz, CDCl₃, RT) δ 173.65, 173.6 and 173.5 (-C(O)-; CL), 170.3 (-C(O)-; PDO), 69.7(-C(O)- CH₂OCH₂CH₂O-; PDO), 68.5(-C(O)CH₂OCH₂CH₂O-; PDO) 64.8(-CH₂O-; CL*-PDO), 64.3(-CH₂O-; CL-CL), 63.4 (-C-(O)CH₂OCH₂CH₂O-; PDO), 34.3, 34.2 and 34.1 (-C(O)CH₂-; CL) 28.5, 28.4, 25.7, 25.6, 24.7 and 24.6 (-CH₂; CL).

Synthesis of HO-PCL-OH. The predetermined amounts of ε -CL and BDO were charged into a rigorously dried two-necked flask, then the reactor was immersed into a preheated oil bath (*T*=130 °C), a predetermined amount of stannous octoate toluene solution (0.5mol L⁻¹, the molar ratio of overall monomer and Sn(Oct)₂ was 10000:1) was injected into the reactor to perform the reaction for 48h. After reaction, the reactor was cooled to room temperature. The crude product was purified by dissolving in CHCl₃ and then precipitated into excess of cold methanol, filtered, washed thrice with methanol to remove unreacted monomer, and dried in a vacuum oven at 40°C to a constant weight.¹

¹H NMR (400 MHz, Chloroform-*d*, RT) δ 4.05 (t, J = 6.7 Hz, 2H; -CH₂O-), 2.30 (t, J = 7.5 Hz, 2H; -C(O)CH₂-),1.67-1.60 (m, 4H; -C(O)CH₂CH₂- and -CH₂CH₂O-), 1.41-1.33 (m, 2H; CH₂).

¹³C NMR (400 MHz, Chloroform-*d*, RT) δ 173.54 (-C(O)-), 64.14(-CH₂O-), 34.12(-C(O)CH₂-), 28.35, 25.53, 24.58(-CH₂).

The number-average molecular weights of HO-PPDO_{41.15%}-c-PCL-OH (around 5000g/mol) and HO-PCL-OH (around 5400g/mol), which are very close to the theoretical value, are calculated from nuclear magnetic resonance (NMR) spectroscopy analysis via the following equation, respectively.

 $M_{n} (HO-PPDO_{41.15\%}-c-PCL-OH) = 102 \times I_{3.78}/I_{3.66} \times 2 + 114 \times I_{2.56}/I_{3.66} \times 2 + 90$ (1) $M_{n} (HO-PCL-OH) = 114 \times I_{2.56} / I_{3.66} \times 2 + 90$ (2)

where $I_{3.76}$ and $I_{3.66}$ are the peak integrations of the corresponding methylene protons of HO-PPDO-OH connected to ester bonds and hydroxyl groups, respectively; where $I_{2.56}$ and $I_{3.66}$ are the peak integrations of the corresponding methylene protons of HO-PCL-OH connected to ester bonds and hydroxyl groups, respectively; and 114, 102, and 90 are the molecular weights of caprolactone, PDO, and BDO, respectively.²

Copolymer randomness was evaluated by determining the sequence distribution in each copolymer. Therefore, the degree of randomness (R)³ of the copolymer chains can be calculated from the equation below:

 $R = 100/L_{PDO} + 100/L_{CL}$

 $L_{PDO} = I_{PDO-PDO*} / I_{CL-PDO*} + 1$

 $L_{CL} = I_{CL-CL*} / I_{PDO-CL*} + 1$

where $I_{PDO-PDO^*}$ (4.35-4.40ppm) and I_{CL-PDO^*} (4.25-4.30ppm) indicate the peak intensity of PDO-PDO* and CL-PDO* sequences of the copolymer calculated from ¹H NMR, and I_{CL-CL^*} (2.25-2.33ppm) and I_{PDO-CL^*} (2.33-2.39ppm) represent the peak intensity of CL-CL* and PDO-CL* sequences of the copolymer determined by ¹H NMR.

				Com. 3 (0/)	Com. 3 (0()	M _n	Dh
Prepolymer	PDO (moi)	CL (MOI)	[MJ/[Cat.]/[I]	CONV. _{PDO} " (%)	CONV. _{CL} ^o (%)	^b (Da)	Ð
HO-PPDO _{41%} -c-PCL-OH	0.5	0.5	1:10000:40	73.2	81.1	5031	1.31
HO-PCL-OH	0	1.0	1:10000:40		79.3	5392	1.37

Table S1: Ring-opening polymerization results of prepolymer.

^{*a*}Monomer conversion measured by ¹H NMR of the quenched solution. ^{*b*}Number-average molecular weight (M_n) and dispersity index ($\mathcal{D}=M_w/M_n$), determined by gel permeation chromatography (GPC) at 30°C in CHCl₃.

Fig S1. The photographs of the original HO-PPDO_{41.15%}-c-PCL-OH (left) and HO-PCL-OH (right).

Fig S2. The ¹H NMR spectra of HO-P(DO_{41.15%}-c-CL)-OH.

Fig S3: The schematic diagram of preparing Artificial pancreatic juice.

Samples	<i>P</i> ¹ (g)	<i>P</i> ² (g)	PDO (%)	PCL (%)	<i>M_n^b</i> (Da)	\mathcal{D}^b
PCL-U	0	30.00	0	100	68582	1.53
PCL-b-CrP ₁₀ -U	12.12	20.00	9.25	90.75	59431	1.46
PCL-b-CrP ₂₀ -U	19.91	10.00	21.15	78.85	60371	1.40
PCL-b-CrP ₂₅ -U	48.84	20.00	25.34	74.66	53590	1.52

Table S2: Chemical Composition and Molecular Characteristics of PCL-b-CrP-U.

¹Prepolymer: HO-P(DO_{41.15%}-c-CL)-OH; ²Prepolymer: HO-PCL-OH; ^bNumber-average molecular weight (M_n) and dispersity index ($\mathcal{D}=M_w/M_n$), determined by gel permeation chromatography (GPC) at 30°C in CHCl_{3.}

Table S3: The FT-IR spectrum of PCL-b-CrP-U samples mainly shows the peak

attribution table

Samples	-NH (stretching bands)	C=0	-C- NH-	-CH ₂	-CH₃	-NH (bending vibrations)	C-O-C
PCL-U	3324	1721	1469	2942	2865	1530	
PCL-b-CrP ₁₀ -U	3323	1721	1469	2942	2865	1535	1240/11 88/1104
PCL-b-CrP ₂₀ -U	3323	1722	1462	2942	2865	1535	1240/11 88/1104
PCL-b-CrP ₂₅ -U	3323	1722	1460	2941	2865	1535	1240/11 88/1104

Fig S4. Th	he TGA	curves of	PCL-	b-C <i>r</i> P-U	samples
------------	--------	-----------	------	------------------	---------

Samples	7 _{5%} (°C)	T _{max} (°C)
PCL-U	288.8	337.4
PCL-b-CrP ₁₀ -U	255.9	322.4
PCL-b-CrP ₂₀ -U	267.0	309.8
PCL-b-CrP ₂₅ -U	289.5	306.8

Table S4. The data of TGA curves of PCL-b-CrP-U samples.

Fig S5. The DSC of PCL-b-CrP-U. (A): to the cooling scans; (B): the second

heating scan.

Complex		$T_{\rm m}^{\rm a}$	$\Delta H_{\rm m}^{\rm a}$	$T_{\rm c}^{\rm b}$	$\Delta H_{\rm c}{}^{\rm b}$	$T_{\rm m}^{\rm c}$	$\Delta H_{\rm m}^{\rm c}$	Χ c,PCL ^C
Samples	7 [°] (°C)	(°C)	(J/g)	(°C)	(J/g)	(°C)	(J/g)	(%)
PCL-U	-60.80	55.43	66.75	21.43	55.90	53.74	79.96	39.72
PCL-b-CrP ₁₀ -U	-58.88	50.56	71.74	9.24	53.14	50.31	55.22	38.98
PCL-b-CrP ₂₀ -U	-53.17	55.96	14.15	-0.58	22.20	41.85	49.65	19.59
PCL-b-CrP ₂₅ -U	-54.14	45.56	9.158	-0.84	24.28	40.57	21.96	19.32

Table S5. Thermal Characterization of PCL-b-CrP-U.

^arecorded according to the first heating scans of the DSC curves; ^brecorded according to the cooling scans; ^crecorded according to the second heating curve.

Complex	Elasticity Modulus	Tensile strength	Elongation at	Hardness
Samples	(MPa)	(MPa)	break (%)	(HA)
PCL-U	257.1±18.0	40.6±2.1	3646±78	69
PCL-b-CrP ₁₀ -U	220.9±22.1	23.0±1.9	2761±62	62
PCL-b-CrP ₂₀ -U	40.2±2.2	7.6±1.1	1520±17	49
PCL-b-CrP ₂₅ -U	39.5±4.4	7.5±0.8	1401±23	47

Table S6. Mechanical performances of PCL-b-CrP-U samples.

Table S7. Summary of cyclic tensile test of PCL-b-CrP₂₀-U and PCL-b-CrP₂₅-U in the first loading-unloading cycle.

Samples		Hystere	Elastic recovery	
	Strain (%)	Value (MJ/m ⁻³)	Ratio (%)	ratio (%)
PCL-b-CrP ₂₀ -U	30	64.257	64.81	70.00
PCL-b-CrP ₂₀ -U	50	136.027	67.30	66.01
PCL-b-CrP ₂₅ -U	30	56.215	59.51	71.7
PCL-b-CrP ₂₅ -U	50	126.965	63.27	67.3

Fig S6. The transmittance of PCL-b-CrP-U film after storage for one months at visible

wavenumber.

Fig S7. The contact angle measurements for PCL-b-CrP-U samples.

Table S8: The Change data of mechanical properties of PCL-U samples afterdegradation for 10 weeks.

Degradation time	Elasticity	Tensile	Elongation at
(week)	Modulus (MPa)	strength (MPa)	break (%)
0	257.6±12.2	41.0±1.9	3646±87
1	245.1±9.6	40.4±2.3	3497±117
2	240.1±18.7	39.1±2.1	3396±287
3	207.8±21.1	39.9±3.4	3380±253
4	199.1±20.9	38.4±2.4	3297±159
5	216.7±19.9	38.5±3.1	3181±279
6	179.2±7.8	35.6±5.8	3204±199
7	172.1±11.1	35.3±5.1	3134±102
8	178.5±13.2	32.5±4.9	3160±99
9	175.9±15.1	35.7±5.7	3054±176
10	172.2±10.2	34.2±5.9	3016±232

Table S9: The Change data of mechanical properties of PCL-b- CrP_{10} -U samples after degradation for 10 weeks.

Degradation time	Elasticity	Tensile	Elongation at
(week)	Modulus (MPa)	strength (MPa)	break (%)

0	220.4±6.7	23.0±1.2	2761±63
1	215.6±5.9	18.9±1.1	1233±101
2	218.1±7.1	16.5±1.7	643±74
3	214.3±5.2	15.4±1.4	627±89
4	204.4±5.3	15.0±0.9	397±57
5	202.3±4.9	14.8±1.7	337±149
6	200.9±6.1	15.9±2.1	321±79
7	206.8±7.6	15.5±2.7	312±113
8	197.4±9.9	15.2±3.1	216±98
9	199.0±8.9	13.9±3.2	150±101
10	206.1±9.1	9.9±2.7	120±81

Table S10: The Change data of mechanical properties of PCL-b-CrP₂₀-U samples after degradation for 10weeks.

Degradation time	Elasticity	Tensile	Elongation at	
(week)	Modulus (MPa)	strength (MPa)	break (%)	
0	43.6±1.6	7.6±0.8	1520±65	
1	42.7±3.4	6.0±0.5	661±147	
2	49.8±2.1	7.1±0.7	588±211	
3	52.1±3.3	6.0±0.5	552±173	
4	38.9±1.8	5.7±0.3	449±119	
5	39.3±2.6	6.6±0.6	331±111	
6	40.7±1.9	6.1±1.1	257±133	
7	41.1±2.0	6.7±0.9	250±97	
8	39.4±2.1	6.0±0.8	130±146	
9	30.9±3.9	4.6±1.2	71±41	
10	30.7±3.1	3.5±1.4	16±7	

Table S11: The Change data of mechanical properties of PCL-b-CrP₂₅-U samples after

Degradation time	Elasticity	Tensile	Elongation at	
(week)	Modulus (MPa)	strength (MPa)	break (%)	
0	39.6±5.4	7.5±1.1	1401±89	
1	37.4±4.7	5.9±0.7	702±136	
2	33.9±5.1	5.5±0.4	625±117	
3	31.2±2.2	4.8±0.3	487±193	
4	32.6±1.9	4.6±0.8	312±159	
5	33.1±4.1	4.8±0.6	101±67	
6	32.4±3.7	4.4±0.9	84±61	
7	26.8±2.6	1.5±0.7	9±5	

Table S12: The changes of PCL mass fraction(φ_{PCL}) during degradation of PCL-b-CrP10-U \land PCL-b-CrP20-U \land PCL-b-CrP25-U.

	φ _{PCL} (%)				
samples	Degradation time (week)				
	0	0 3		10	
PCL-U	100	100	100	100	
PCL-b-CrP ₁₀ -U	91.64	92.01	92.30	92.69	
PCL-b-CrP ₂₀ -U	80.65	81.13	81.33	81.73	
PCL-b-CrP ₂₅ -U	78.38	82.54	82.71	83.03	

$$\chi_{c, PCL}(\%) = \frac{\Delta H_{m, PCL}}{\Delta H_{0, PCL} \times (\varphi PCL)} \times 100\%$$

where H_m is the experimental melting enthalpy and w is the weight fraction of the corresponding component in the blend. $\Delta H_{0,PCL}=139J/g$ for PCL were used according to reported enthalpy of melting of 100% crystalline PCL.

Table S13: The changes of PPDO and PCL content during degradation of PCL-b- CrP_{10} -U $\$ PCL-b- CrP_{20} -U $\$ PCL-b- CrP_{25} -U.

	PPDO content (%)			PCL content (%)				
samples	Degradation time (week)			Degradation time (week)				
	0	3	6	10	0	3	6	10
PCL-U					100	100	100	100
PCL-b-CrP ₁₀ -U	9.25	8.85	8.53	8.10	90.75	91.15	91.47	91.90
PCL-b-CrP ₂₀ -U	21.15	20.63	20.41	19.98	78.85	79.37	79.58	80.01
PCL-b-CrP ₂₅ -U	25.34	19.11	18.94	18.59	74.66	80.89	81.06	81.41

REFERENCES

 A. Stjerndahl, A. Finne-Wistrand, A.-C. Albertsson, C. -M Backesjo, U. Lindgren, J. Biomed. Mater. Res., Part A. 2008, 87A, 1086.

2、D. -D. Yang, C. Wu, G. Wu, S. -C Chen, and Y. -Z. Wang, *Macromolecules* 2021, **54**, 291.

3、 T. Q. Wang, H. -Z. Zhao, Y. Liu, J. -Y. Hao, J. Appl. Polym. Sci., 2013, 2978.