## PEDOT:PSS Hydrogels with High Conductivity and Biocompatibility for in situ Cell Sensing

Taotao Yang<sup>a#</sup>, Ming Yang<sup>a#</sup>, Chao Xu<sup>a</sup>, Kun Yang<sup>a</sup>, Yuming Su<sup>a</sup>, Yongqin Ye<sup>c</sup>, Lingyun Dou<sup>a</sup>, Qin Yang<sup>a</sup>, Wenbo Ke<sup>b,\*</sup>, Bin Wang<sup>c,\*</sup>, Zhiqiang Luo<sup>a,\*</sup>

<sup>a</sup> National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

<sup>b</sup> Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

<sup>c</sup> Department of General Surgery, Shenzhen Children's Hospital, Shenzhen 518026, China.

<sup>#</sup> These authors contributed equally: Taotao Yang, Ming Yang.

## **Corresponding Author**

\*(Zhiqiang Luo) Email: <u>zhiqiangluo@hust.edu.cn</u>

\*(Wenbo Ke) Email: <u>kewenbo@hust.edu.cn</u>

\*(Bin Wang) Email: <u>szwb1967@126.com</u>



**Fig. S1** Photographs of the conductive polymers prepared under acidic system with pH = 3.0 and ammonium persulfate as the oxidant. The only difference from the preparation of hydrogels is that no PEDOT:PSS solution was added during this process.



**Fig. S2** Photographs of the fabricated PEDOT:PSS hydrogel electrodes. (A) Photograph of the PEDOT:PSS/PIn-5NH<sub>2</sub> hydrogel electrode on GCE. (B) Photograph of the PEDOT:PSS/PIn-5NH<sub>2</sub> hydrogel electrode on ITO.



**Fig. S3** Electrochemical performance optimization of AuNPs/PEDOT:PSS/PIn- 5-NH<sub>2</sub>/GCE. (A) Amperometric responses of AuNPs/PEDOT:PSS/PIn-5-NH<sub>2</sub>/GCE to subsequent additions of 20  $\mu$ L of 100 mM dopamine into 10 mL PBS solution (pH=7.4) at different potentials. (B) Amperometric responses of AuNPs/PEDOT:PSS/PIn-5-NH<sub>2</sub>/GCE to subsequent additions of 20  $\mu$ L of 100 mM dopamine into 10 mL PBS solution (pH=7.4) at different stable time. (C) Amperometric responses of AuNPs/PEDOT:PSS/PIn-5-NH<sub>2</sub>/GCE to subsequent additions of 20  $\mu$ L of 100 mM dopamine into 10 mL PBS solution (pH=7.4) at different stable time. (C) Amperometric responses of AuNPs/PEDOT:PSS/PIn-5-NH<sub>2</sub>/GCE to subsequent additions of 20  $\mu$ L of 100 mM dopamine into 10 mL PBS solution (pH=7.4) at different electrodeposition time of AuNPs.



**Fig. S4** TEM image of ultrasonic-dispersed AuNPs/PEDOT:PSS/PIn-5-NH<sub>2</sub>. Au NPs were marked with red arrows.



**Fig. S5** Biocompatibility of PEDOT:PSS/PIn-5NH<sub>2</sub> hydrogels. (A) The viability of PC12 cells after cultured for 4 h, 1 day, 2 days, and 3 days. The supplemented DMEM cell culture mediums soaked with purified PEDOT:PSS/PIn-5NH<sub>2</sub> hydrogel, purified PEDOT:PSS/PIn-5NH<sub>2</sub> hydrogel were used for *in vitro* biocompatibility tests, and the supplemented DMEM without incubating the PEDOT:PSS/PIn-5NH<sub>2</sub> hydrogel was used as a control. (B) Live (green) and dead (red) staining of PC12 cells cultured on PEDOT:PSS/PIn-5-NH<sub>2</sub> hydrogel for different time: 4 h, 1 d, 2 d, 3 d. scale bar, 100 μm. The supplemented DMEM was used as a control.

**Table S1.** Comparison of the proposed PEDOT:PSS hydrogels with previously reported purePEDOT:PSS hydrogels.

| Materials                                                | Matrixs/<br>Corss-linkers (w/w)                                                                                             | Conductivity                      | Ref.         |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|
| PEDOT:PSS/conductive<br>polymers                         | PEDOT:PSS/PPy, PAni, PIn-4NH <sub>2</sub> , PIn-<br>5NH <sub>2</sub> , PIn-6NH <sub>2</sub> , PIn-7NH <sub>2</sub> (~3.3:1) | 1176.8-3265 S<br>m <sup>-1</sup>  | This<br>work |
| PEDOT:PSS/PPy                                            | PPy/PEDOT:PSS (~24.6:1)                                                                                                     | 867 S m <sup>-1</sup>             | 1            |
| Conductive<br>polymers/PEDOT:PSS                         | PPy, PAni, PIn-4NH <sub>2</sub> , PIn-5NH <sub>2</sub> , PIn-6NH <sub>2</sub> , PIn-7NH <sub>2</sub> /PEDOT:PSS (~5.71:1)   | 11.72 -70.54 S<br>m <sup>-1</sup> | 2            |
| PEDOT:PSS/DMSO                                           | PEDOT:PSS (100 %)                                                                                                           | 2000 S m <sup>-1</sup>            | 3            |
| PEDOT:PSS/concentrated<br>H <sub>2</sub> SO <sub>4</sub> | PEDOT:PSS (100 %)                                                                                                           | 880 S m <sup>-1</sup>             | 4            |
| PEDOT:PSS/DBSA                                           | PEDOT:PSS/DBSA (~1:4)                                                                                                       | 10 S m <sup>-1</sup>              | 5            |

|                                               | -                       |                         |                            |                           |              |
|-----------------------------------------------|-------------------------|-------------------------|----------------------------|---------------------------|--------------|
| Materials                                     | Detection technique     | Linear range<br>(µм)    | Detection<br>limit<br>(µм) | Biocompatibility<br>study | Ref.         |
| AuNPs/<br>PEDOT:PSS/<br>PIn-5-NH <sub>2</sub> | Amperometry             | 0.03 - 688.75           | 0.01                       | Yes                       | This<br>work |
| $K_2Fe_4O_7$                                  | DPV                     | 1 - 40.0;<br>40 - 140.0 | 0.22                       | -                         |              |
| NACP film<br>electrode <sup>a</sup>           | DPV                     | 0.05 - 15               | 0.010                      | Yes                       |              |
| MnO <sub>2</sub> NFs/NG <sup>b</sup>          | DPV                     | 0.1 - 10;<br>10 - 100.0 | 0.036                      | -                         |              |
| Pt-Ag/Gr                                      | DPV                     | 0.1 - 60.0              | 0.012                      | -                         |              |
| Gold nanocone<br>electrode                    | CV                      | 1.0 - 43.0              | 0.184                      | -                         |              |
| Cu <sub>x</sub> O/ERGO <sup>c</sup>           | Amperometry             | 0.1 - 400.0             | 0.012                      | -                         |              |
| CR-GNP <sup>d</sup>                           | Amperometry             | 0.4 - 56.0              | 0.042                      | -                         |              |
| Au@NAC-<br>MWCNTs <sup>e</sup>                | DPV                     | 0.1 - 250.0             | 0.03                       | -                         |              |
| ZnO NSB/GF <sup>f</sup>                       | DPV                     | 1 - 80.0                | 0.01                       | -                         |              |
| NMCS <sup>g</sup>                             | Amperometry             | 0 - 500.0               | 0.01                       | -                         |              |
| SNP/GO <sup>h</sup>                           | Amperometry             | 0.1 - 100.0             | 0.2                        | -                         |              |
| SPANI/CNSs <sup>i</sup>                       | Amperometry             | 0.5 - 1780              | 0.0152                     | -                         |              |
| GNPs/MWCNTs <sup>j</sup>                      | Square wave voltammetry | 0.4 - 5.7               | 0.07                       | -                         |              |

**Table S2.** Performance comparison of the AuNPs/PEDOT:PSS/PIn-5-NH<sub>2</sub> biosensor towards electrochemical sensing of DA with previously reported electrochemical sensors.

<sup>a</sup> Ni-MOF composite/AuNPs/CNTs/PDMS; <sup>b</sup> MnO<sub>2</sub> nanoflowers/nitrogen-doped graphene; <sup>c</sup> Cu<sub>2</sub>O/CuO/electrochemically reduced graphene oxide; <sup>d</sup> Curcumin functionalized gold nanoparticles; <sup>e</sup> Au clusters/N-acetyl-L-cystein/carboxylated-multiwall carbon nanotubes; <sup>f</sup> ZnO nanosheet balls/graphene foam; <sup>g</sup> 3D-ridge nanosheets of N-doped mesoporous carbon; <sup>h</sup> Silver nanoparticle/graphene oxide; <sup>i</sup> Sulfonated polyaniline/carbon nanospheres; <sup>j</sup> Gold nanoparticles /MWCNTs

## Reference

- 1. X. Ren, M. Yang, T. Yang, C. Xu, Y. Ye, X. Wu, X. Zheng, B. Wang, Y. Wan and Z. Luo, *ACS Appl. Mater. Interfaces*, 2021, **13**, 25374-25382.
- 2. T. Yang, C. Xu, C. Liu, Y. Ye, Z. Sun, B. Wang and Z. Luo, *Chem. Eng. J.*, 2022, **429**, 132430.
- 3. B. Lu, H. Yuk, S. Lin, N. Jian, K. Qu, J. Xu and X. Zhao, *Nat. Commun.*, 2019, **10**, 1043.
- 4. B. Yao, H. Wang, Q. Zhou, M. Wu, M. Zhang, C. Li and G. Shi, *Adv. Mater.*, 2017, **29**, 1700974.
- S. Zhang, Y. Chen, H. Liu, Z. Wang, H. Ling, C. Wang, J. Ni, B. Celebi-Saltik, X. Wang, X. Meng, H. J. Kim, A. Baidya, S. Ahadian, N. Ashammakhi, M. R. Dokmeci, J. Travas-Sejdic and A. Khademhosseini, *Adv. Mater.*, 2020, **32**, e1904752.