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Experimental:

Synthesis of 9-(2-(2-methoxyethoxy)ethyl)-9H-carbazole, 2

To a solution of carbazole (3.34 g, 20 mmol) in DMF (80 mL) at 0 ℃ was added NaH 

(0.72 g, 30 mmol). After heating at 80 ℃ for 1.5 h, 1-chloro-2-(2-

methoxyethoxy)ethane (3.31g, 24 mmol) was added dropwise. The resulting mixture 

was kept at 80 ℃ overnight. After cooling down to 0 ℃, the reaction mixture was 

carefully quenched with water and extracted with ethyl acetate three times. The 

combined organic phase was washed with water and brine. Then the organic layer was 

dried over anhydrous sodium sulfate and the solvent was removed. The residue was 

purified by silica gel chromatography using petroleum ether and ethyl acetate as eluent 

(EA:PE = 1:3) to afford alkylated carbazole 5 (4.46 g) as brown oil in 83% yield. 1H 

NMR (400 MHz, CDCl3) δ 8.09 (d, J = 7.6 Hz, 2H), 7.46 (m, 4H), 7.23 (m, 2H), 4.51 

(t, J = 6.4 Hz, 2H), 3.86 (t, J = 6.4 Hz, 2H), 3.52 (m, 2H), 3.42 (m, 2H), 3.31 (s, 3H). 

13C NMR (100 MHz, CDCl3) δ 140.5, 125.6, 122.8, 120.2, 118.9, 108.7, 71.8, 70.7, 

69.1, 59.0, 43.0. MS (FAB) m/z Calcd for C17H19NO2 269.1 Found 269.2 [M]+.

3-Bromo-9-(2-(2-methoxyethoxy)ethyl)-9H-carbazole, 3 

To a solution of 2 (2 g, 7.4 mmol) in dichloromethane (60 mL) was added NBS (1.3 g, 

7.4 mmol) portion-wise in an ice-water bath. After complete addition, the solution 
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mixture was warmed to room temperature and stirred overnight. The resulting solution 

was washed with water and brine. The organic phase was dried over anhydrous sodium 

sulfate and the solvent were removed. The residue was purified by silica gel 

chromatography using ethyl acetate and petroleum ether (EA: PE = 1: 5) as eluent to 

afford 3 (1.75 g) in 68% yield as an oil that can turn into solid after standing. 1H NMR 

(400 MHz, CDCl3) δ 8.16 (d, J = 2.0 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.51 (dd, J = 

8.0 Hz, 2.0 Hz, 1H), 7.44 (m, 2H), 7.34 (d, J = 8.4 Hz, 1H), 7.22 (m, 1H), 4.46 (t, J = 

6.0 Hz, 2H), 3.83 (t, J = 6.0 Hz, 2H), 3.48 (m, 2H), 3.39 (m, 2H), 3.28 (s, 3H). 13C 

NMR (100 MHz, CDCl3) δ 140.7, 139.2, 128.2, 126.3, 124.5, 122.8, 121.8, 120.4, 

119.3, 111.7, 110.4, 109.0, 71.8, 70.7, 69.1, 59.0, 43.2. MS (FAB) m/z Calcd for 

C17H18BrNO2 347.0 Found 347.3 [M]+.

9-(2-(2-Methoxyethoxy)ethyl)-9H-carbazole-3-carbaldehyde, 4 

To a solution of 3 (1.5 g, 4.3 mmol) in dried THF (45 mL) was added n-BuLi (3.5 mL 

5.2 mmol) at -78 ℃. The resulting mixture was stirred at -78 ℃ for 1 h and then added 

with dried DMF (3 mL). The reaction mixture was allowed warming up to room 

temperature and stirred overnight before quenching with aqueous ammonia chloride 

solution. Water was added and extracted with ethyl acetate three times. The combined 

organic phase was washed with brine and dried over anhydrous sodium sulfate. After 

removing the solvent, the residue was purified by silica gel chromatography using ethyl 

acetate and petroleum ether (EA: PE = 1: 2) as eluent to afford 7 (0.76 g) as yellow 

solid in 60% yield. 1H NMR (400 MHz, CDCl3) δ 10.07 (s, 1H), 8.58 (d, J = 0.8 Hz, 
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1H), 8.13 (d, J = 8.0 Hz, 1H), 7.98 (dd, J = 8.8 Hz, 0.8 Hz, 1H), 7.51 (m, 3H), 7.30 (m, 

1H), 4.53 (t, J = 6.0 Hz, 2H), 3.87 (t, J = 6.0 Hz, 2H), 3.49 (m, 2H), 3.38 (m, 2H), 3.26 

(s, 3H). 13C NMR (100 MHz, CDCl3) δ 191.8, 144.3, 141.1, 128.5, 127.1, 126.6, 123.7, 

123.0, 122.9, 120.6, 120.4, 109.4, 109.3, 71.8, 70.8, 69.1, 59.0, 43.4. MS (FAB) m/z 

Calcd for C18H19NO3 297.1 Found 297.3 [M]+.

(E)-9-(2-(2-Methoxyethoxy)ethyl)-3-(2-(quinolin-4-yl)vinyl)-9H-carbazole, 5 

To the solution of lepidine (0.8 g, 5.6 mmol) and 9-(2-(2-methoxyethoxy)ethyl)-9H-

carbazole-3-carbaldehyde (1.78 g, 6.0 mmol) in DMF (10 mL) in sealed tube, TMSCl 

(6.4 mL, 50 mmol) was added and the resulting mixture was heated to 100 ℃ for 24 h. 

After cooling down to 0 ℃, water was added followed by NaHCO3 aqueous solution 

to pH 8. The water solution was extracted with dichloromethane three times. The 

combined organic phase was washed with brine and dried over anhydrous sodium 

sulfate. After removing the solvent, the residue was purified by silica gel 

chromatography using dichloromethane and petroleum ether (DCM: PE = 1: 4) as 

eluent to afford 5 (1.63 g) in 69% yield. 1H NMR (400 MHz, CDCl3) δ 8.85 (d, J = 4.8 

Hz, 1H), 8.27 (s, 1H), 8.25 (d, J = 7.6 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 8.12 (d, J = 

7.6 Hz, 1H), 7.78 (d, J = 16 Hz, 1H), 7.73 (d, J = 6.4 Hz, 1H), 7.70 (t, J = 7.6 Hz, 1H), 

7.43-7.58 (m, 6H), 7.26 (t, J = 7.2 Hz, 1H), 4.46 (t, J = 6.0 Hz, 2H), 3.84 (t, J = 6.0 Hz, 

2H), 3.49 (t, J = 5.6 Hz, 2H), 3.41 (t, J = 5.6 Hz, 2H), 3.30 (s, 3H). 13C NMR (100 

MHz, CDCl3) δ 150.0, 148.5, 143.3, 140.9, 140.9, 135.9, 129.9, 129.1, 127.8, 126.3, 

126.2, 124.9, 123.5, 123.2, 122.7, 120.3, 119.5, 119.4, 116.3, 109.3, 109.1, 71.8, 70.7, 
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69.1, 58.9, 43.1. HRMS (MALDI-TOF) m/z Calcd for C28H27N2O2 423.2083 Found 

423.2067 [M + H]+.

(E)-1-(Carboxymethyl)-4-(2-(9-(2-(2-methoxyethoxy)ethyl)-9H-carbazol-3-

yl)vinyl)-quinolinium bromide (SLCOOH) 

A solution of 5 (0.21 g, 0.5 mmol) and bromoacetic acid (0.28 g, 2.0 mmol) in ethanol 

was stirred overnight at room temperature. After removing the solvent, the residue was 

precipitated from methanol and ethyl acetate to afford SLCOOH (0.13 g) in 46% yield. 

1H NMR (400 MHz, DMSO-d6) δ 9.27 (d, J = 6.8 Hz, 1H), 9.18 (d, J = 8.0 Hz, 1H), 

8.90 (s, 1H), 8.62 (d, J = 7.2 Hz, 1H), 8.60 (d, J = 6.8 Hz, 1H), 8.52 (d, J = 16 Hz, 1H), 

8.42 (d, J = 16 Hz, 1H), 8.32 (d, J = 8.4 Hz, 1H), 8.26-8.23 (m, 2H), 8.15 (d, J = 8.8 

Hz, 1H), 8.06 (t, J = 7.6 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 

7.53 (t, J = 7.2 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 5.89 (s, 2H), 4.64 (t, J = 5.2 Hz, 2H), 

3.84 (t, J = 5.2 Hz, 2H), 3.49-3.46 (m, 2H), 3.32-3.29 (m, 2H), 3.11 (s, 3H). 13C NMR 

(100 MHz, DMSO-d6) δ 167.9, 154.4, 147.9, 146.3, 142.4, 141.0, 138.7, 135.4, 128.9, 

127.6, 126.7, 126.5, 126.1, 122.9, 122.2, 122.1, 120.4, 120.0, 119.0, 116.2, 115.1, 

110.6, 110.5, 71.3, 69.8, 68.9, 58.1, 42.9. HRMS (MALDI-TOF) m/z Calcd for 

C30H29N2O4 481.2122 Found 481.2156 [M]+.

In vivo NIRF imaging of SLCOOH

Before background imaging, 5XFAD transgenic mice and age-matched wild-type mice 

were shaved as controls. Before imaging, oxygen (1.0 mL) was supplemented with 

isoflurane gas (2.0 mL min-1). The mice were anesthetized under theses condition, kept 
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still, and then injected with 100 µL of SLCOOH (10 mg/kg) through the tail vein. The 

IVIS imaging system was used to collect fluorescence images from the brain at different 

time points. A filter set (excitation at 496 nm and emission at 690-700 nm) was used to 

obtain a fluorescent image with an exposure time of 1 s. Living Image software was 

used to analyze the image and select the ROI in the brain area. Brain fluorescence 

intensity was obtained from photon counting. The data were analyzed by normalizing 

the fluorescence intensity to the background fluorescence of each mouse [i.e. 

F(t)/F(pre)], where F(t) is the fluorescence intensity at the time point of interest and 

F(pre) is the background fluorescence signal.

Co-staining brain tissues of 5XFAD-Tg mice ex vivo

5XFAD transgenic mice were injected with SLCOOH via tail vein. After 30 minutes, 

it was deeply anesthetized and perfused intracranially with PBS, and then perfused with 

8% formaldehyde in PBS (pH 7.4). After excision, the brain is buried in the optimal 

cutting temperature compound (OCT), and then the slice is frozen with a cryostat 

(thickness 10 μm). Next, 0.4% Triton X-100 was used to infiltrate the free-floating 

portion and block in a blocking solution containing 2% BSA. For staining by Thio-S, 

the sections were incubated with 1.0 μM Thio-S solution for 5-8 minutes, then washed 

with 25% ethanol for 4 minutes, then washed with PBS for 5 minutes, and then washed 

in water for 5 minutes. For co-staining studies, free-floating sections were further 

incubated with primary antibodies, namely 4G8, 6E10 (1:200) at 4°C overnight. Collect 

the primary antibody the next day. The sections were washed in PBS and incubated in 
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a 2% BSA solution containing goat anti-mouse or goat anti-rabbit secondary antibodies 

conjugated with Alexa Fluor 488 (1:500) at room temperature for 2 h. A confocal laser 

scanning microscope (Leica TCS SP8) at the School of Traditional Chinese Medicine, 

Hong Kong Baptist University was used to sequentially capture images of Aβ 

immunofluorescence reactivity, followed by images of SLCOOH on Aβ species.
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Fig. S1A. UV-vis absorption and emission spectra of SLCOOH.

Fig. S1B. Fluorescence spectra of SLCOOH (10 µM) in the presence of 10 µM of 

Aβ1-42 fibril, Tau-441 aggregate, BSA, α-Synuclein, IgM, IgG, HAS (Human Serum 

Albumin), L-Gys (L-Cysteine), IAPP (islet amyloid polypeptide) and PrP (prion 

protein) in 25 mM phosphate buffer (pH = 7.4).
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Fig. S1C. The pH effect on the fluorescence intensity of SLCOOH (30 μM) in 0.2 M 

phosphate buffer. Data are expressed as the mean ± SD of three independent 

measurements (n = 3).

Fig. S1D. The time courses of fluorescence intensity of SLCOOH (30 μM) in the 

presence and absence of Aβ1-42 fibrils (150 µM). 
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Fig. S1E. Fluorescence titration of Aβ1-42 species with SLCOOH and the respective 

saturation binding curves of SLCOOH to Aβ1-42 species, respectively.
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Fig. S1F. Plots of fluorescence change of SLCOOH (5 μM) in the presence of 

various concentrations of Aβ1-42 fibril, Aβ1-42 oligomer and Aβ1-42 monomer in 25 mM 

phosphate buffer (pH = 7.4). The limit of detection was calculated by 3σ/k to be 0.52, 

1.56, and 1.61 μM, respectively; where σ is the standard deviation of blank 

measurement; k is the slope.
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Fig. S1G. (a) Fluorescence spectra of ThT /Aβ1-42 fibril complex (ThT, 5 μM/Aβ1-42 

fibrils, 10 μM) by adding SLCOOH (c = 0-10 μM) stepwise into the complex in 25 

mM phosphate buffer (pH = 7.4) obtained by an excitation at 420 nm. (b) The curve 

fitting of the nonlinear plots of fluorescence intensity difference of ThT at 482 nm 

(green trace) and SLCOOH at 630 nm (red trace), respectively as a function of 

SLCOOH concentration.
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Fig. S1H. Isothermal titration calorimetry (ITC) binding profiles of SLCOOH and 

Aβ1-42. (A) For Aβ1-42 fibril: ICT thermogram and the binding isotherm from the 

integrated thermogram fit using the one-site model in the MicroCal PEAQ-ITC 

Analysis Software with n = 3.40 ± 0.099, and Kd = 4.54 ± 1.09 μM. (B) For Aβ1-42 

oligomers: ICT thermogram and the binding isotherm from the integrated thermogram 

fit with n = 1.98 ± 3.54, and Kd = 124 ± 130 μM. (C) For Aβ1-42 monomer: ICT 

thermogram and the binding isotherm from the integrated thermogram fit with n = 

1.01 ± 5.41, and Kd = 158 ± 189 μM.

Table S1. Summaries of optical properties of SLCOOH in different solvents 

Solvent
abs

max / nm

(max ×104 / M-1cm-1)

em
max 

a 

(Stokes Shift) / nm
PL 

b

DMSO 498 (2.53) 666 (168) 0.30
SLCOOH

PB 469 (1.93) 666 (197) 0.003

Table S2. Dissociation constant (Kd (FT)), fluorescence enhancement factor, and limit 

of detection (LOD) of SLCOOH with various Aβ1-42 species, respectively estimated 

from the fluorescence titration of Aβ1-42 species with SLCOOH. Dissociation 

constant determined by ICT (Kd (ICT))

mAβ1-42 oAβ1-42 fAβ1-42

Kd (FT)(µM) 54.7 65.5 25.6

LOD (µM) 1.61 1.52 0.52
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Kd (ICT)(µM) 158 124 4.5

Fig. S2. Plots of the results of ThT fluorescence assay of Aβ1-42 in the presence of 

SLCOOH.      
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Fig. S3. Cell viability values (%) estimated by MTT proliferation. Human 

neuroblastoma SH-SY5Y neuronal cells were treated with different concentrations of 

SLCOOH at 37 ℃ for 24 h.
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Fig. S4. Neuroprotective effect of SLCOOH against Aβ1-42 species toward SH-SY5Y 

neuronal cells.
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Fig. S5. LC-ESI-MS spectra of brain extracts of the SLCOOH-treated mice.
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 (A)            (B)

Fig. S6.  Ex vivo images of SLCOOH in brain slices of (A) 6-month-old 5XFAD Tg 

and (B) age-matched WT mice co-localized with ThS and a primary antibody (6E10 

and 4G8) and then a secondary antibody conjugated with Alexa 488.
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Fig. S7. SLCOOH treatment reduces Aβ levels in the hippocampus of AD mice. (a) 

Western blot analysis of Aβ, APP, and BACE1 protein levels in the hippocampus. (b) 

Densitometric analysis of (a). (c) Western blot analysis of Aβ, APP, and BACE1 

protein levels in the cortex. (d) Densitometric analysis of (c) (#p < 0.05, ##p < 0.01, 

*p < 0.05, n = 6). 

Fig. S8. SLCOOH reduces tau hyperphosphorylation by inhibiting the activity of 

GSK3β but not PP2A in vivo. (a, b) Representative Western blot images (a) and 

quantification (b) of GSK3, p-GSK3β (Ser9), PP2A, p-PP2A (Tyr307), expression 

levels in the hippocampus of WT, control and SLCOOH-treated mice. (c, d) 

Representative Western blot images (c) and (d) of the expression levels of these 

kinases in the cortex (#p < 0.05, *p < 0.05, 1, n = 6).

http://topics.sciencedirect.com/topics/page/Western_blot
http://topics.sciencedirect.com/topics/page/Western_blot
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Fig. S9. SLCOOH promotes the formation of autophagosomes but not ubiquitin 

proteasomal system. (a, b) Representative Western blot images (a) and quantification 

(b) of LC3Ⅱ/LC3Ⅰ and ubiquitin protein expression levels in the hippocampus of WT, 

control and SLCOOH-treated mice. (c, d) Representative Western blot images (c) and 

quantification (d) of the expression levels of these kinases in the cortex (#p < 0.05, *p 

< 0.05, 1, n = 6). 
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Fig. S10. SLCOOH increases initiation of autophagy pathway in vivo. (a, b) 

Representative Western blot images (a) and quantification (b) of mTOR/P-mTOR, 

and p70S6K/P-p70S6K, Beclin 1, p62, cathepsin D expression levels in the 

hippocampus of WT, control mice and SLCOOH-treated. GAPDH was used as the 

loading control. (c, d) Representative Western blot images (c) and quantification (d) 

of the expression levels of these kinases in the cortex. GAPDH was used as the 

loading control. (#p < 0.05, *p < 0.05, 1, n = 6).
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Fig. S11. (a) Representative western blots of PSD95 and Synaptophysin in the 

hippocampus and cortex. GAPDH was used as the loading control. (b and c) 

Densitometric analyses of the data in (a). (b) Hippocampus. (c) Cortex. (##p<0.01, *p 

< 0.05, **p<0.01, n = 6).

Fig. S12. (a) Representative western blots of CaMKII, p-CaMKII, ERK, p-ERK, 

CREB and p-CREB in the hippocampus and cortex of WT, AD and SLCOOH-

treated mice at 6 months. GAPDH was used as the loading control. (b-c) 
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Densitometric analyses of the data in (a) (means ± SEMs). (b) Hippocampus. (c) 

Cortex. (#p <0.05, ## p<0.01, *p<0.05, ****p<0.0001. n = 6)

Fig. S13. SLCOOH alleviated the overload of intracellular Ca2+ in 3×Tg AD mice 

primary neurons. (a) Representative confocal images of intracellular Ca2+ in primary 

AD neurons transfected with AAV9-jRCaMP1. (Scale bar: 20 μm) (b) The 

quantification of intracellular Ca2+ level. (**p < 0.01, n = 6 cells; The data was 

quantified from three independent experiments)
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Fig. S14. SLCOOH decreases the intracellular Ca2+ level through downregulating the 

expression level of NMDAR2B. (a) Representative western blots of NMDAR2A, p-

NMDAR2A, NMDAR2B, p-NMDAR2A in the hippocampus and cortex of WT, AD 

and SLCOOH-treated mice at 6 months. GAPDH was used as the loading control. (b-

c) Densitometric analyses of the data in hippocampus (b) and cortex (c). (#p <0.05, *p 

<0.05, n = 6). 
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Fig. S15. 1H and 13C NMR and HRMS spectra of SLCOOH.

Fig. S16. A HPLC trace of synthesized SLCOOH.


